
No. 1 i-Technology Magazine in the World

PLUS...

Migrating J2EE Applications from
Development to Production

What, Where, or
Who Is Java?

JDJ.SYS-CON.COM VOL.10 ISSUE:11

RETAILERS PLEASE DISPLAY
UNTIL DECEMBER 31, 2005

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

IN THIS ISSUE...
Arranged Java Marriages
PAGE 6

Creating Web Applications with
the Eclipse Web Tools Project
PAGE 18

Rich Internet Components with
JavaServer Faces
PAGE 36

Precision Team
Management

JAVA GOF BEHAVIORAL DESIGN PATTERNS PAGE 44

W I T H A J A X
A peek into modern technologies for
browser-based applications

PART 2

���

��
��� �����������������
���
��

���
��
���
���������������������������� ��
���
���
����������������������������

��������������������������
��������������������������

�������������������������������������� ���

����������������������������

���
��

��

���

3November 2005JDJ.SYS-CON.com

f successful trade expos are a good
barometer of the market place (and
they are), then things are going very
well indeed with the homegrown

category of apps named by Macromedia
(soon to become Adobe), namely RIAs.
 Whether “rich Internet applications”
are going to be dominated by Adobe
in the future, just as Macromedia has
dominated them in the past is open to
question. There are many pretenders to
the throne, not least those in the AJAX
camp.
 One of the first hurdles for their coin-
age, “RIAs,” to jump though is that of
passing into common
currency. Developers
are definitely using the
term, but they don’t
seem to be taking to it
as fast as they took to,
say, “Web services” or
“podcasts” or “social
software.” Which
started me thinking:
To what extent are the
winners and losers
in the game of personal and enterprise
software those who first and foremost
win The Name Game?
 It’s nothing new, of course. Douglas
Coupland wrote, in Microserfs, that
“everybody’s trying to find a word that
expresses more bigness than the mere
word ‘supermodel’” and instanced at-
tempts like ‘hypermodel,’ ‘gigamodel,’
and ‘megamodel’ – none of which, so
far as I am aware, has caught on.
 That was originally published in
WIRED 2.01, though, back in the
mid-’90s. Ten years on, I am happy to
report that humankind is no longer
suffering from any such inability to
come up with a word bigger than “super-
model.” Of course it’s the technol-
ogy sector that has come to our rescue,
just when it was maybe looking like
this word-poverty was reflecting some
kind of collective “inability to deal
with the crushing weight of history
we’ve created for ourselves as a
species” (Coupland’s – marvelous
– words again).

 The rescue-words I have in mind?
‘”Terabyte” and ‘gigabyte,” for starters.
PCs containing a terabyte or more of
storage space have recently become pos-
sible using combinations of high-capac-
ity mass-market hard drives. As of about
mid-2005, common commercial hard
drives exceeded 400 gigabytes in size, so
storage capacity totaling a terabyte or
more can be reached using as few as two
or three hard disks, at a street cost of as
little as $450, down from over $1000 in
2003.
 I would go so far as to say that any
company who dares to disturb the

lexicon (for want of any
better way of describing
it) sufficiently early in
the product release cycle
is 50 times as likely to
catch on, whether it be
with VCs or the general
public. It’s why the iPod
Nano got off to such a
roaring start in spite of
its subsequent, erm, screen
difficulties; and why Nick

Kamen’s invention, codenamed “Gin-
ger” or “IT” (neither of them exactly
dictionary-busters), was doomed from
the moment it was unveiled as the even
less lexicon-disturbing “Segway Human
Transporter.”
 This is not overly scientific, I hear
you say. Yet I fear you may immediately
remember what I’m saying when next
any of the following terms trip off your
tongue: “Java SE 6,” “Java EE 5,” and “Java
ME.”
 Josephine Baker once wrote: “I was
learning the importance of names –
having them, making them – but at the
same time I sensed the dangers. Recog-
nition was followed by oblivion, a yawn-
ing maw whose victims disappeared
without trace.”
 Baker, who died in 1975, never
lived to see the birth of Java. I do hope
that no yawning maw ever swallows it
up only 15 years later just because those
in charge of naming and renaming it
were afraid to sufficiently disturb the
lexicon.

From the Group Publisher

Disturbing
the Lexicon

 Editorial Board
 Desktop Java Editor: Joe Winchester
 Core and Internals Editor: Calvin Austin
 Contributing Editor: Ajit Sagar
 Contributing Editor: Yakov Fain
 Contributing Editor: Bill Roth
 Contributing Editor: Bill Dudney
 Contributing Editor: Michael Yuan
 Founding Editor: Sean Rhody

Production
 Production Consultant: Jim Morgan
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Associate Editor: Seta Papazian
 Research Editor: Bahadir Karuv, PhD

Writers in This Issue
Michael Baum, Jason Bell, Yakov Fain, John Fallows,

 Jeremy Geelan, Tugdual Grall, Phil Herold, Jonas Jacobi,
Onno Kluyt, Boris Minkin, Igor Nys, Victor Rasputnis,
Puneet Sangal, Anatole Tartakovsky, Joe Winchester

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2005 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Dorothy Gil, dorothy@sys-con.com. SYS-CON Media and
SYS-CON Publications, Inc., reserve the right to revise, republish and

authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

For List Rental Information:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant
Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan is

group publisher of

SYS-CON Media and

is responsible for the

development of new

titles and technology

portals for the

firm. He regularly

represents SYS-CON

at conferences and

trade shows, speaking

to technology

audiences both in

North America

and overseas.

jeremy@sys-con.com

Jeremy Geelan

I

���

��
��� �����������������
���
��

���
��
���
���������������������������� ��
���
���
����������������������������

��������������������������
��������������������������

�������������������������������������� ���

����������������������������

���
��

��

���

5November 2005JDJ.SYS-CON.com

NOVEMBER 2005 VOLUME:10 ISSUE:11

contents
JDJ Cover Story

24

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.
Periodicals postage rates are paid at Montvale, NJ 07645 and additional
mailing offi ces. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.

Features

FROM THE GROUP PUBLISHER

Disturbing the Lexicon
by Jeremy Geelan.................................3

VIEWPOINT

Arranged Java Marriages
by Yakov Fain.................................6

ENTERPRISE

Scripting Languages Ease
Development and Administration
The ideal solution for automating repeated tasks
and creating extensible applications
by Tugdual Grall.................................10

DESKTOP JAVA VIEWPOINT

What, Where, or Who Is Java?
by Joe Winchester.................................54

TECHNIQUES

List-Based UI Framework
Ideas for your Swing application development
by Phil Herold.................................56

JSR WATCH

2005 JCP EC Elections
Ratifi cation results in,
open nominations under way
by Onno Kluyt.................................60

ENTERPRISE

Migrating J2EE Applications from
Development to Production
Is it becoming more complex?
by Michael Baum.................................14
ECLIPSE

Creating Web Applications with
the Eclipse Web Tools Project
Using open source
 by Boris Minkin.................................18
CORE AND INTERNALS VIEWPOINT

‘As Long As It Works’
by Jason Bell.................................30
Q&A

Precision Team Management
Interview with Nigel Cheshire, CEO,
Enerjy Software
Interview by Jeremy Geelan.................................32

Rich Internet Components
 with JavaServer Faces
by Jonas Jacobi and John Fallows

36

 Java GoF Behavioral
Design Patterns

by Puneet Sangal

44

 by Igor Nys, Victor Rasputnis, and Anatole Tartakovsky

A peek into modern technologies
for browser-based applications

PART 2

JDJ.SYS-CON.com6 November 2005

s per Wikipedia, “an
arranged marriage is
a marriage in which
the marital partners

are chosen by others based on
considerations other than the
pre-existing mutual attraction
of the partners.”

 This definition comes to mind
when I see how large IT organi-
zations prearrange “marriages”
between Java application devel-

opers and architects. I’d like to
discuss potential issues between
architects and developers and, to
avoid confusion, I’ll keep quoting
Wikipedia in italic font.

The Honeymoon
 As soon as your IT department
grows to more than a half of a
dozen Java developers, the leader
of the pack (the architect) suggests
centralized creation of reusable
components. This is an easy sell:
your group is agile and still not too

large and, if one of these compo-
nents needs to be changed, the
architect is right on the premises
and he or she works for you and
on your schedule. Developers
know on which shelf a singleton
object resides and where the date
transformation utilities are locat-
ed, and they are happily reusing
them as the need arises. At this
stage we can call relations be-
tween developers and architects
consensual.

The Family Life
(Corporate Politics)
 Time goes by, the economy is
on the rise, and older Java species
bring in the younger ones. The
population increases. Manage-
ment moves the architects from
several application development
units into a new group where they
can increase reusability of the
objects and frameworks across
the enterprise.

–continued on page 8

Viewpoint

Yakov Fain
Contributing Editor

Arranged
Java Marriages

A

President and CEO:
 Fuat Kircaali fuat@sys-con.com

Vice President, Business Development:
 Grisha Davida grisha@sys-con.com

Group Publisher:
 Jeremy Geelan jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

 Carmen Gonzalez carmen@sys-con.com

Vice President, Sales and Marketing:
 Miles Silverman miles@sys-con.com

Advertising Sales Director:
 Robyn Forma robyn@sys-con.com

National Sales and Marketing Manager:
 Dennis Leavey dennis@sys-con.com

Advertising Sales Manager:
 Megan Mussa megan@sys-con.com

Associate Sales Manager:
Kerry Mealia kerry@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com

Associate Editor:
 Seta Papazian seta@sys-con.com

Production
Production Consultant:

 Jim Morgan jim@sys-con.com

Lead Designer:
 Tami Lima tami@sys-con.com

Art Director:
 Alex Botero alex@sys-con.com

Associate Art Directors:
 Abraham Addo abraham@sys-con.com
 Louis F. Cuffari louis@sys-con.com

Assistant Art Director:
 Andrea Boden andrea@sys-con.com

Video Production:
 Frank Moricco frank@sys-con.com

Web Services
Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:
 Stephen Kilmurray stephen@sys-con.com
 Vincent Santaiti vincent@sys-con.com
 Shawn Slaney shawn@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:
 Betty White betty@sys-con.com

Accounts Receivable:
 Gail Naples gailn@sys-con.com

SYS-CON Events
President, SYS-CON Events:

 Grisha Davida grisha@sys-con.com

National Sales Manager:
 Jim Hanchrow jimh@sys-con.com

Customer Relations
Circulation Service Coordinators:

 Edna Earle Russell edna@sys-con.com
 Linda Lipton linda@sys-con.com

JDJ Store Manager:
 Brunilda Staropoli bruni@sys-con.com

Yakov Fain is a J2EE architect

and creator of seminars

“Weekend with Experts”

(www.weekendwithexperts.

com). He is the author of the

best-selling book The Java
Tutorial for the Real World and

an e-book Java Programming for
Kids, Parents and Grandparents.

Yakov also authored several

chapters for Java 2 Enterprise
Edition 1.4 Bible.

yakovfain@sys-con.com

Architecture groups often turn
themselves into small kingdoms where

mere Java mortals are not allowed”
“

JDJ.SYS-CON.com8 November 2005

Viewpoint

AD

–continued from page 6

 When a new development
project begins, you (the applica-
tion developer) are told that you
must use only the objects and
frameworks recommended by the
architecture group. Basically, you
don’t have a choice.

 Noble families, especially
reigning families, long used ar-
ranged marriage to consolidate
their strengths and to join their
kingdoms. The parents, who often
arrange the marriages, are trusted
to make a match that is in the
best interest of their children;
though there are times when
the choosers select a match that
serves their interest and not the
couple’s.

 Yes, your architects create new
components and frameworks, but
don’t they have to compete with
outside third-party vendors? If
Jakarta Commons has a generic
pool object, why are you not
allowed to use it in your project
and have to use the homegrown
pool instead?

 Arranged marriages can also
be very flexible. In one scenario,
the parents introduce their son
or daughter to several potential
mates, while giving two the final
decision, given some time.

 Here’s a typical conversation
over the morning coffee:
• Darling, I need a generic Java

class that would run SQL que-
ries that are given in an XML
file.

• No problem, honey. Now I’m
working on a very exciting
project: a global logger that
will allow reading of any log

file on any specified corporate
workstation. But I’ll definitely
look into your request next
month.

• But I have my deadlines…
Remember, you promised
that my wish would be your
order…

 Architecture groups often turn
themselves into small kingdoms
where mere Java mortals are not
allowed (they might have picked
up this infection after multiple
unsafe relations with Oracle
DBAs). Their main business is
now the evaluation and purchase
of the third-party tools and the
introduction of new software lay-
ers between these tools and busi-
ness applications. They know
how to talk the talk, and the CIO
rests assured that everything
goes well. Meanwhile, experi-
enced application developers
start to quietly develop their
own components to meet their
deadlines. Their weak attempts
to offer these completed useful
components back to the archi-
tecture group are not always well
received.

 Proponents of arranged mar-
riages claim that arranged mar-
riages are more successful than
other marriages. They hold that
the spouses in an arranged mar-
riage begin without any expecta-
tions from each other, and that as
the relationship matures, a greater
understanding between the two
develops.

The Family Budget
 Who pays the architects’
salaries? The architects usu-
ally cut slices from the approved
budgets for business application
development. I am absolutely
not against such deals as long as

the architects don’t forget who
makes their living. They can
really save the firm’s money by
suggesting solutions leading to
efficient utilization of existing
server licenses, idling hardware,
use of open source products,
parallel computing, performing
code reviews, mentoring of junior
developers, delivering technical
training (not the one that exists in
the approved list of courses), and
suggesting best practices that are
immediately applicable to busi-
ness systems.

 Arranged marriages operate
on the notion that marriages are
primarily an economic union or a
means to have children.

 Unfortunately, not every mar-
riage produces children.

Divorce Is Not an Option
 It has also been said that in
some cultures where divorce is
forbidden or uncommon, ar-
ranged marriage would work out
nicely because both husband and
wife would accept the marriage,
producing their best efforts to
make it a success instead
of breaking up at the slightest
conflict.

 Needless to say that applica-
tion developers must also put
their best foot forward and stop
blaming architects when some-
thing doesn’t work right. The
chances are that you didn’t spend
enough time learning how to use
these components. Maybe they’re
not that bad?
 Oh well, it’s time to take a
shower, go to bed, and have rela-
tions with my spouse…oops…I
meant to say it’s time to go to a
meeting with the Java architec-
ture group.

If Jakarta Commons has a generic pool object,
why are you not allowed to use it in your project and have to

use the homegrown pool?”
“

��
��
��
���

�������������������������������������

���

���

��

��
��
��
��

�������������
����������
�����������

�������������������������
���������������������������
�����������������������������

Introducing Actuate BIRT, the Business Intelligence and Reporting Tools you need for
your Eclipse applications. With a single click, you install Actuate BIRT and all related
plug-ins, and then you can use BIRT to:

· Guide you through all of the steps of developing a report
· Create reports with full language support
· Manage and test your data sources and queries
· Create report designs with an object-based, drag-and-drop, WYSIWYG editor
· Edit properties for standard and custom report items

With Actuate BIRT, your organization gets the license indemnification, technical
support and software maintenance it needs to make BIRT a reliable part of its
Java strategy. Try a free download of Actuate BIRT today at www.actuate.com/birt
or call us at 800-884-8665.

ACTUATE BIRT.
ALL THE POWER OF OPEN-SOURCE REPORTING WITH NONE OF THE RISK.

JDJ.SYS-CON.com10 November 2005

s developers or system
administrators, we all have
common tasks that must be
replicated again and again. A

few examples might be creating a new
feature test, populating a test database
with data, copying data from a file
system to a database, or creating new
user accounts…. You get the idea.
 Scripting languages share a number
of characteristics that make them ideal
for managing such redundant tasks:
• Their built-in abstract data types let

them easily manipulate lists, arrays,
or other composite structures. Also,
the languages are often extended
with regular expression support and
built-in sorting capabilities.

• They support dynamic typing.
• They offer automated memory and

exception management.
• They don’t need a compiler and can

be run directly from a command
line or interpreter – meaning you
can just write and run.

 Because of these characteristics,
scripting languages require less code
than system-level languages such
as Java, C, and C++. Does this mean
that the Java language is obsolete
and useless and will be replaced by
scripting languages? Not at all. Just as
shell scripts written in Perl and Python
didn’t replace C, Java and scripting
languages are, in fact, complementary.
 Java is more than a simple language.
It contains many low-level features,
including networking, input-output,

XML manipulation, and threading,
that have contributed to its success.
It’s also an enterprise-ready solution
based on the services provided by the
J2EE platform, including persistence,
transaction management, security,
Web services, and open connectivity
using J2EE Connector Architecture.
 Java scripting languages extend the
benefits of scripting development with
the power of Java – with the goal of
making Java development easier and
more productive.

Java Scripting Language Offerings
 Over the past few years, multiple
Java scripting solutions have emerged,
and many are encountering good
adoption in the developer community.
Most of today’s Java scripting languag-
es are based on open source projects
that either port an existing scripting
language to Java or simplify Java to
offer a more high-level development
approach.

 Table 1 lists some of the most popu-
lar languages built around Java.

Scripting in Action
 If you’re not familiar with script-
ing languages, you might be skeptical
about the benefits they provide. Let’s
look at some simple examples that
illustrate these benefits.
 Listing 1 provides a small Java pro-
gram that processes a list of strings
and prints those that are shorter than
six characters.
 Here’s the same program written as
a Groovy script:

list = [“BeanShell”,”Groovy”,”Jacl”,”JRuby”

,”JudoScript”,”Jython”,”Rhino”]

shorts = list.findAll { it.size() >= 6 }

shorts.each { println it }

 As you can see, using Groovy dra-
matically reduces the number of lines
of code that you have to write. It’s also
easier to read.
 In addition to a very concise syn-
tax, most scripting languages provide
high-level constructs for dealing
with most of the components that
current systems use. For example,
many provide APIs for manipulat-
ing XML documents, simplifying
database operations, or creating user
interfaces. Some languages such as
BeanShell, Groovy, and JudoScript
also have native integration with
Apache Ant to facilitate build and
test tasks, as discussed in the next
section.

Enterprise

by Tugdual Grall

Scripting Languages Ease
Development and Administration

A

Tugdual Grall is a principal

product manager for J2EE and

Web services at Oracle. He

joined Oracle in January 1999

initially with Oracle France in

consulting, and, since April

2002, he has worked with Oracle

Application Server product

management. His current areas

of focus include J2EE and Web

services with Oracle Containers

for J2EE (OC4J)

tugdual.grall@oracle.com

The ideal solution for automating repeated tasks and creating extensible applications

Java scripting languages extend the benefits of scripting
development with the power of Java”“

��
��������������������������������

��
���

����������������������������������
����������������������������������

��

���
���
��
��
��
��
�
�������������������
���
���
���
���

��
��������������������������������

��
���

����������������������������������
����������������������������������

��

���
���
��
��
��
��
�
�������������������
���
���
���
���

JDJ.SYS-CON.com12 November 2005

Enterprise

Scripting Languages and Apache Ant
 Using Ant to automate tasks such
as building and testing development
projects has become almost standard
practice in the Java development
cycle. However, there are often times
when using Ant for complex tasks
isn’t feasible. In such cases, it may
be easier to write a quick script
using Groovy, JudoScript, or Bean-
Shell and embed it in the Ant build.
xml file.
 The following example shows how
BeanShell instructions can be embed-
ded in a build.xml file:

<project name=”antBeanShell”

default=”execScript” basedir=”.”>

 <target name=” execScript “>

 <!-- Run script from a file -->

 <script language=”beanshell”

src=”demo.bsh”/>

 <!-- Run script in-line -->

 <script language=”beanshell”><!

[CDATA[

 for(int i=0; i<10; i++)

 print(“i=”+i);

]]></script>

 </target>

</project>

 You can also replicate Ant scripting
using Groovy. In this case, you wouldn’t
use XML to manipulate the different
tasks; instead, you’d use a real scripting
language, which would allow better
constructs such as loops and logical
branching. You can even mix Ant and
Groovy operations in a single script
file.

Where Should You Use
Scripting Languages?
 As we’ve seen, scripts are well suited
to automating redundant tasks such as
building and testing applications. They
can also be useful when you need to cre-
ate quick prototypes for a specific feature.
 Although some developers often ques-
tion its use, you can use scripts to build
complex applications – or at least use
them inside complex applications or sys-
tems. Outside of the Java world, develop-
ers have used languages such as PHP, Perl,
Python, and Tcl to create multiple Web
sites or as part of complex integration
projects.
 The story is much the same with regard
to Java scripting languages. While you
might not be able to completely build
a complex application using one of the
scripting languages I’ve mentioned, these
technologies can help you create more
agile solutions.
 As a developer, you may often have to
add new business logic to your applica-
tion due to constantly changing require-
ments. However, you may also need
your application to be extensible so that
advanced users or third-party developers
can plug in their own modules.
 Administrators and developers can
use scripts to connect to a Java applica-
tion (such as J2SE or J2EE) using JMX so
they can configure and deploy it. This is
another example where scripts leverage
a low-level Java API to easily perform
complex tasks.
 For such uses, scripting languages are
ideal. Already, some Web applications,
such as Portal or Wiki, let developers add

new features by publishing their own
scripts to the product. Desktop applica-
tions based on Swing, SWT, or even native
languages also offer extensibility based on
scripts.
 Another example is the service-orient-
ed architecture world, where the goal is to
interconnect various services. Here, using
scripting technologies to provide the
plumbing in a loosely coupled manner is
especially practical, since scripts are easy
to change and completely dynamic.

Wrapping It Up
 Java scripting languages can provide
the ideal solution for Java developers
or system administrators who need to
automate repeated tasks or create exten-
sible applications, while still leveraging
the power of Java and the J2EE platform.
Along with reducing code, scripting
languages integrate well with commonly
used tools such as Ant. The dynamic
nature of scripts also makes them ideal to
use when you’re adding features to exist-
ing products.
 Another sign of the importance of
scripting in current development projects
is that scripting technologies will be
directly integrated into Java; Java 6 (code
name Mustang) will contain a JavaScript
interpreter based on Rhino. Also, the JSR
223, Scripting for the Java Platform, is a
JCP specification that defines a low-level
API to expose a scripting language engine
to the Java platform. The current refer-
ence implementation integrates PHP,
JavaScript, and Groovy.

 Table 1

BeanShell

Groovy

Jacl

JRuby

JudoScript

Jython

Rhino

Language

Java Source interpreter

Java-like language that comiles as
Java classes.

Java implementation of the Tcl
scripting language.

Java implementation of the Ruby
scripting language.

Javascript-like language that runs in
a JVM.

Java implementation of the Python
scripting language.

Java implementation of the Javascript
interpreter. This will be built into the
next release of Java (Java 6/Mustang).

Description

www.beanshell.org

groovy.codehaus.org

tcljava.sourceforge.net

jruby.sourceforge.net

www.judoscript.com/

www.jython.org/

www.mozilla.org/rhino/

Web Site

Listing 1
 public class Sample1 {
 public static void main(String[] args
) {
 List list = new java.util.ArrayList();
 list.add(“BeanShell”);
 list.add(“Groovy”);
 list.add(“Jacl”);
 list.add(“JRuby”);
 list.add(“JudoScript”);
 list.add(“Jython”);
 list.add(“Rhino”);
 Filter filter = new Filter();
 List shorts = filter.filterLonger
 Than(list, 6)
 for (String item : shorts) {
 System.out.println(item); }
 }
 public List filterShorterThan(List
 list, int length) {
 List result = new ArrayList();
 for (String item : list) {
 if (item.length() >= length) {
 result.add(item); }
 }
 return result;
 }
}

SUPERCHARGE

YOUR APPS WITH

THE POWER OF

LOCATION

INTELLIGENCE

Contact us at sales@mapinfo.com

Try it and see for yourself. Visit www.mapinfo.com/sdk
Learn more about the MapInfo Location Platform for Java,
access whitepapers and download free SDKs.

Create applications for:
• Web-based store location finders • Visualizing where your customers are
• Analyzing where revenue comes from – and where it doesn’t • Managing assets such as cell towers, vehicles and ATMs

100% Java SDK enables Location
Intelligence through web services

Create desktop & web UIs using
Swing, JSP and JSF Components

Integration with Eclipse, NetBeans,
IntelliJ and more

SUPERCHARGE

YOUR APPS WITH

THE POWER OF

LOCATION

INTELLIGENCE

Contact us at sales@mapinfo.com

Try it and see for yourself. Visit www.mapinfo.com/sdk
Learn more about the MapInfo Location Platform for Java,
access whitepapers and download free SDKs.

Create applications for:
• Web-based store location finders • Visualizing where your customers are
• Analyzing where revenue comes from – and where it doesn’t • Managing assets such as cell towers, vehicles and ATMs

100% Java SDK enables Location
Intelligence through web services

Create desktop & web UIs using
Swing, JSP and JSF Components

Integration with Eclipse, NetBeans,
IntelliJ and more

JDJ.SYS-CON.com14 November 2005

ecades ago, when we were all
computing on mainframes,
the application stack was
pretty simple. Programs were

all running in core memory on the
same machine as the operating system
and the data store. There was typically
one transactional log for activity and
one for errors – not too many places
to look for evidence of what had gone
wrong and why.
 Then the application stack started
to grow up. Client software com-
municated over a network to a server
running a more featured operating
system and an RDBMS (relational
database management system). The
biggest challenge for developers was
debugging those fat clients – typically
by looking at something like Windows
event viewer logs. System administra-
tors were generally busy responding
to alerts from SNMP traps and rum-
maging through network device logs
or sniffing TCP traffic looking for the
source of network failures.
 Fast forward to the year 2005. Now
our compute environments are dis-
tributed architectures based on a mul-
titude of open source and proprietary
components.
 Each application requires many
tiers of technology. Physical data cen-
ter and logical application stack com-
plexity is exploding. It’s not uncom-
mon for a mission-critical application
in a single deployment to require a
hundred or more physical machines
and devices.

What Does This Mean for
Java Developers? Mountains of Data…
 The significance of all of these new
dependencies for the typical enter-
prise application is that managing the
modern stack requires the ability to
understand large amounts of eviden-

tial data produced by all these differ-
ent tiers, components, and technolo-
gies. This is especially true for J2EE
applications.
 A recent survey by JBoss of their
customers revealed that the typi-
cal J2EE application gets deployed
in four environments on its way to
going live: development, QA, stag-
ing, and production. Each migration
becomes increasingly difficult, time-
consuming, and expensive. Each
environment introduces new trouble-
shooting tasks and involves more
people and resources for resolution.
Code defects, configuration errors,
resource conflicts, and multi-tier
dependencies are key sources of the
pain.

 Developing, deploying, and manag-
ing J2EE applications today means
being able to understand how Web
servers, application servers, data-
bases, storage systems, security, and
networking all work together. At the
Web tier we’re greping Apache and IIS
logs. Our J2EE application servers are
generating JMS, log4j, custom Java
logging, and JMX. If we want to figure
out persistence dependencies, the da-
tabase tier requires an understanding
of JDBC (Java Database Connectivity)
exceptions, redo or audit tables, slow
query information, and replication
status.

 When we look at an application
server, a Web server, or a database in a
medium-sized enterprise data center, it
could be generating (depending on the
verbosity level) anywhere from 10 to 100
megabytes of data per day in its logs.
If you add up all the subcomponents
of the typical enterprise data center,
log data can account for upwards of a
terabyte of data in a single day.
 Unfortunately, there’s a tremendous
amount of disparity between different
types of log file data. An Apache log, for
example, has little, if anything, in com-
mon with a MySQL slow query log or a
JBoss log4j server log. However, entries
from different sources of evidence do
typically have a timestamp and an
IP address from the host generating
the evidence. Occasionally there will
be one or two common values like a
session ID, thread, or process number,
or, in the case of a database, a SELECT
statement. These are the kinds of clues
we need to look for to figure out what is
actually happening at runtime within
the application stack.
 Let’s look at a few of the environ-
ments that a J2EE application gets
deployed in on its way to going live. For
each, I’ll show a common breakdown
that Java developers are experiencing
today.

Development and QA Environments
 Deployment of a J2EE development
environment for building and debug-
ging Web-based applications requires
at least three tiers of the application
stack – a Web server, an application
server, and a database. Initial instal-
lation and configuration, debugging
container interaction problems, or
optimizing code for performance are
often troublesome tasks that require
access to multiple sources of evidence,
including Web server access and error

Enterprise

by Michael Baum

Migrating J2EE Applications from
Development to Production

D

Michael Baum is chief executive

splunker at Splunk. During his

career, he has been building and

managing large distributed

infrastructures, most recently at

Yahoo and Infoseek. His focus

now is applying many of the

innovations and affordances

that grew out of the Web to

the challenges of managing

the modern data center.

You can read his blog at

www.splunk.com/

blogs/thebaum

Is it becoming more complex?

15November 2005JDJ.SYS-CON.com

logs, application server logs, the ap-
plication logs themselves, EJB and JMS
activity, JVM state data through JMX,
JDBC exceptions, and database Redo or
activity logs.
 Consider the following example of
debugging a Java container-managed
persistence problem. This is a very
common situation where, after deploy-
ing an application in a development
environment, we decided to upgrade
the database to one that resembles
more of what we’ll use in production
when our application goes live. Many
development environments by default
come bundled with a simple database.
In our case, we’re using Hypersonic,
which comes bundled with JBoss, and
we want to switch it out for MySQL.
We’ve redeployed our application after
switching from Hypersonic to MySQL,
and the MySQL JDBC library is getting
loaded, but we get an exception when
trying to run the application.

[root@localhost 2005-10-12 06:55:20]# ant

–f jboss-build.xml run-cmp

Buildfile: jboss-build.xml

run-cmp:

 [java] Caught an exception:

 [java] java.rmi.Server Exception:

RemoteException occurred in server thread;

nested exception is:…

 The rest of the exception was not
helpful so we decided to look through
the JBoss log4j server for entries with a
severity level of “error.” Narrowing the
search to the same time-frame as the
exception helps minimize the number
of errors on which we need to focus. In
our case, we found the following error
indicating that our EJB could not be
instantiated, but it doesn’t tell us why.

2005-10-12 06:55:29,111 ERROR [org.jboss.

ejb.plugins.LogInterceptor] EJBException

in method: public abstract void roster.

Roster.createLeague(util.LeagueDetails)

throws java.rmi.RemoteException: javax.ejb.

EJBException: Could not instantiate bean;

CaughtByException is:

*Could not instantiate bean

*at roster.RosterBean.

createLeague(RosterBean.java:439)…

 Again, the rest of the log entry was
not really helpful in this situation, so we
decided to search the log for “debug”-
level entries for our RosterBean around
the same time-frame as the EJB error. We
discovered that a state file was missing.
Aha! The application server was prob-
ably holding on to the old application
deployment state file, so we deleted the
state files and restarted the application
server.

2005-10-12 06:55:29, 159 DEBUG [org.

jboss.ejb.plugins.AbstractInstanceCache]

Activation failure javax.ejb.EJBException:

Could not activate; failed to restore

state; CausedByException is:

*/opt/live_jboss/jboss-4.0.2/server/alltmp/

sessions/RosterBean-eepnx16n-1m/eepo2fs6-

1p.ser (No such file or directory)

*at org.jboss.rjb.plugins.StatefulSessionFi

lePersistenceManager.activateSessions(Statef

ulSessionFilePersistenceManager)…

Moving to Staging Environments
 Once a J2EE application has been
developed and debugged, it typically
gets moved into a staging environment
that more accurately represents a model
of the destination production systems.
Staging an application involves not only
developers but also system administra-
tors who are responsible for setting up
and managing the staging environment.
Because the environment can be signifi-
cantly more involved than development,
production migration issues often in-
clude IP address and port binding issues,
incorrect database and service access
permissions, and wrong Java class paths
and/or versions. Correcting these types
of problems now requires a more de-
tailed understanding of the database tier
and system configurations. A knowledge
of networking and security also becomes
very important.

Scaling Up in Production Environments
 Provided your production environ-
ment is not too dissimilar from your

staging environment, most production
issues typically relate to troubleshoot-
ing hard-to-find defects, threshold
conditions, latent dependency issues,
and resource conflicts. Unfortunately,
these are the types of complex system
problems that often take hours and
sometimes days to track down. These
are the types of problems that can suck
up a lot of an IT organization’s time and
money. In fact, most production envi-
ronments running a modern applica-
tion stack have become too difficult for
help desk and first-line support staff
to assist with troubleshooting. So the
initial evidence gathering and analysis
falls to system administrators (the ones
who understand physical complexity)
and developers (the ones who under-
stand logical complexity).
 We’ve all been through the reported
incidents of application availability
problems resulting in the multi-tier
“blame game” drill. Investigating the
chain of evidence from a Web server to
the application server to the database
across a network can be very pain-
ful. There are many sources of IT data
and it often takes two or more domain
experts to understand the data.
 In this example, we see a series of
events from three tiers that needs to be
located to track the trail of a single Web
browser posting data into a database.
The transaction in question is a $200
ATM withdrawal from account ID 5005.
 First, from the Apache access log,
we’re able to find the following by look-
ing through the logs for the account ID:

127.0.0.1 - 200 [18/Oct/2005:08:53:31 -

0800] “GET /bank/atm?accountId=5005&opera

tion=0 HTTP/1.1” 200 1987 “http://local-

host:8080/bank/main” “Mozilla/5.0 (X11; U;

Linux i686; en-US; rv:1.7.8) Gecko/20050524

Fedora/1.0.4-4 Firefox/1.0.4”

127.0.0.1 - 200 [18/Oct/2005:08:53:40 -

0800] “POST /bank/atmAck HTTP/1.1” 200 1148

“http://localhost:8080/bank/atm?accountId

=5005&operation=0” “Mozilla/5.0 (X11; U;

Linux i686; en-US; rv:1.7.8) Gecko/20050524

Fedora/1.0.4-4 Firefox/1.0.4”

Developing, deploying, and managing J2EE applications today means
being able to understand how Web servers, application servers,

databases, storage systems, security, and networking all work together”
“

JDJ.SYS-CON.com16 November 2005

 Next, from the application server
logs, we are able to find the trail of
events processing the application
logic. We find the first event by look-
ing at the account ID and follow the
events in time to the remainder of the
trail:

2005-10-18 08:53:39,793 INFO [STDOUT]

Debug: 5005

2005-10-18 08:53:39,793 INFO [STDOUT]

Debug: Setting operation to: 0

2005-10-18 08:53:39,793 INFO [STDOUT]

Debug: Setting amount to: 220.00

2005-10-18 08:53:39,793 INFO [STDOUT]

Debug: Setting account id to: 5005

2005-10-18 08:53:39,783 INFO [STDOUT]

Debug: /atmAck

 Finally, from the database, we see the
connection to the SQL statements with
the account ID and EJB name:

/*C10*/SET AUTOCOMMIT FALSE

DELETE FROM NEXT_ID WHERE BEANNAME=ʼtxʼ

INSERT INTO NEXT_ID VALUES(ʻtxʼ,137)

COMMIT

/*C6*/INSERT INTO TX

VALUES(ʻ137ʼ,NULL,ʼ2005-10-18

08:53:39.931ʼ,-220.00,7108.28,ʼATM

Withdrawalʼ)

DELETE FROM ACCOUNT WHERE ACCOUNT_ID=ʼ5005ʼ

INSERT INTO TX VALUES(ʻ137ʼ,ʼ5005ʼ,ʼ2005-

10-18 08:53:39.931ʼ,-220.00,7108.28,ʼATM

Withdrawalʼ)

COMMIT

 In this simple example we had
enough associative data information to
follow a series of cascading events from
one tier to the next; however, it’s usually
not this easy. Most multi-tier systems
don’t have this kind of identifier thread-
ing through each tier of technology.
More advanced troubleshooting tech-
niques, such as searching for time-based
correlations or transitive data connec-
tions, are usually required. Obviously,
knowing your data and knowing what to
look for helps. Having automated tools
that can quickly search through multiple
data sources is a good idea too.

Look What’s Coming Next
 Someone once told me that data cen-
ters are like roach motels…stuff comes
in but it never comes out. As Java and
J2EE technologies become even more
mission-critical, Web services become
more widely deployed, and new layers
like virtualization arrive, look out!
 At the recent JBoss World conference
in Barcelona, I met several developers
working on the next generation of large-
scale, truly mission-critical applications.
Samuel Stammbach from SkyGuide in
Switzerland is building the world’s first
air traffic control system based on J2EE.
Ron Eller from HP talked about the real-
time reticketing application they’ve built
for Continental Airlines to provide in-
stant changes to tickets and the ability to
change a ticket online. Jean-Marie Lap-
eyre is the director of project Copernic, a
10-year program with a 1B Euro budget
to build a simplified online tax system
for 55M citizens and 3M businesses in

France. Copernic has 4,000 Linux serv-
ers and a committed goal to solve every
problem within 48 hours. The Copernic
Web site had 5B hits for the current tax
season during a two-month period and
3.8M returns were filed online last year.
 All of these developers are looking to
Web services and service-oriented archi-
tectures to reduce complexity through
the reuse of software components
and easier integrations between J2EE
containers, services, and legacy systems.
According to Gartner Group, we’re all
buying into the vision. Gartner estimates
by 2008, 80% of software development
projects will be based on service-orient-
ed architectures and, by 2006, more than
60% of the $500B market for IT services
will be based on Web services standards
and technologies. Looks like we’ll all be
adding Web services requests, WS*, and
WSTransaction logs to the pile of stuff we
already need to regularly sift through.
 Another obvious trend to watch is the
continued popularity of open source,
which is also changing the character-
istics of the modern application stack.
No longer do the third-party tools and
components we use come from a small
number of vendors. More than two-
thirds of enterprises are using open
source technologies and there are more
than 100,000 open source projects on
SourceForge.net. All this choice is great,
but at what cost?
 What’s the next technology to jump
on the stack? It’s called virtualization.
Some say virtualization will be the
solution to the explosion of physical
machines and devices while others be-
lieve it will only create additional logical
complexity, rendering it unmanage-
able. Time will tell, but for sure all that
virtualization state information and
activity logs will need to be added to the
mountain of IT data we need to grok.
 It’s been 10 years since the birth of
Java, and 4.5 million Java developers
would agree that J2EE has become the
standard for enterprise applications.
Now we’re all spending an increasing
amount of time and effort trying to
keep our applications running as the
“application stack” has become more
complex. Analyst firms like IDC have
sized the total expenditure on managing
data centers upwards of $100B. I’d be
interested to know how much of that is
consumed by the human labor element
of troubleshooting J2EE applications.

Enterprise

 Figure 1 Phases of Application Migration

Debugging
Code

Regression
Testing

Configuration
& Deployment

Performance
Optimization

Peak Loads Defects
Upgrades
Patches

Application
Development

Developers

System
Administrators

QA
Engineers

Support Staff

IT Operations

IT Operations
Managers

Development QA Deployment Production

Ap
pl

ic
at

io
n

Li
fe

 C
yc

l e
Tr

ou
bl

es
ho

ot
in

g
Ta

sk
s

JDJ.SYS-CON.com18 November 2005

he Web Tools Project (WTP) by
the Eclipse Foundation is a set of
open source tools that substan-
tially reduce the time required

for the development of Web applica-
tions, EJBs, and Web services. The WTP’s
current version is 0.7.1 and version 1.0
is coming later this year. The framework
provides wizards and tools to create
EJBs, Web components such as servlets
and JSPs, and Web services using the
Axis engine. It also provides source edi-
tors for HTML, JavaScript, CSS, JSP, SQL,
XML, DTD, XSD, and WSDL; graphical
editors for XSD, WSDL, J2EE project
builders, models, and a J2EE navigator;
a Web service wizard, explorer, and WS-I
Test Tools; and database access, query
tools, and models.
 In this article I’ll show you how to
develop and deploy a JSP Web applica-
tion with WTP in less than an hour. I’ll
also cover the creation and deployment
of a basic servlet and editing JSP with
WTP. Let’s develop the WTP application
together but, first, we need to install the
following software:
1. J2SE 5.0 JRE: http://java.sun.com/j2se
2. Eclipse 3.1: www.eclipse.org
3. WTP 0.7.1: www.eclipse.org/webtools
4. Tomcat 5.0: http://jakarta.apache.org/

tomcat/
5. MySQL 4.0.25: http://www.mysql.com
6. MySQL Connector/J Driver 3.1: http://

www.mysql.com/products/connector/
j/

Application Overview
 Our application will be a basic Web
application implementing the following
use cases:
• Customers need to register on the site

to place orders.
• Customers can place orders.
• Customers can view their orders.
• Admin can list all registered

customers.

 The system will be implemented
using a servlet programming model
and MySQL database.

Configuring MySQL Database
and the Data Source
 By default, when MySQL gets
installed, a TEST database is avail-
able. Be sure to launch C:\Mysql\
winmysqladmin.exe to specify the
user name and password (the first
time you launch it, it lets you do
it and also starts the database
server). It’s necessary to copy
MySQL Connector/J JDBC Driver:
mysql-connector-java-3.1.10-
bin.jar to the Tomcat/common/
lib directory, so the Tomcat server
can recognize it.
 To configure MySQL database
access in Tomcat, we have to add a
separate file called Listing 1: DBTest.
xml; the file follows a convention
of “application_name.xml” under
$TOMCAT\conf\catalina\localhost
directory. The only problem with
this file is that it may get deleted
when the application is undeployed,
so if you undeploy and redeploy
the application, you have to place
this file into the same folder again
(so it’s a good idea to save it some-
where else). Looking inside the
DBTest.xml file, please note that
in our case we are using “ODBC”
for the username and don’t provide
any password.

Building Our Web Application Using
Web Tools and a Database
 Before we can start working on
the Web project, we must config-
ure Tomcat 5.0 in Eclipse to be
our default server. When Web Tools
are installed in Eclipse, new perspec-
tives and options are added, such
as a J2EE perspective where you

can create J2EE projects, Web proj-
ects, and Web services. New options
are available under the Window-
Preferences menu for configuring
Tomcat servers with Eclipse. Go to
Window – Preferences menu, under
Server select – Installed Runtimes,
click Add, and then specify Tomcat
5.0 server with the installed JRE and
a path to the Tomcat installation
directory (see Figure 1). Now create a
Dynamic Web Project using the Web
Tools wizard by selecting File-New-
Other, then expanding Web-Dynamic
Web Project.
 We’ll name the project DBTest,
which will also become its context
root. The Web module will be tar-
geted to our default server: Tomcat.
Click Finish and the DBTest Web
project gets created. This project
will contain all of our Web resources,
such as HTML and JSP files, and
servlets, and you’ll be able to export
it into a standard WAR file later, if
needed.

Creating Supporting Domain Classes
and Tables
 Before creating servlets, let’s
create supporting classes to repre-
sent a customer and an order. The
class diagram in Figure 2 depicts the
Customer and Order relationship.
 Note that when creating Cus-
tomer and Order classes, we define
corresponding fields as their public
instance variables and then can
automatically generate getters and
setters from those fields. This can be
easily done by going to Outline view
(appears after you double-click on an
existing class name or create a new
class), selecting a class, and selecting
“Source – Generate Getters and Set-
ters…” from the right-button menu
(see Figure 3).

Eclipse

by Boris Minkin

Creating Web Applications
with the Eclipse Web Tools Project

T

Boris Minkin is a Divisional

Vice President of a major

financial corporation. He

has more than 12 years of

experience working in various

areas of information technology

and financial services. Boris is

currently pursuing his Masters

degree at Stevens Institute of

Technology, New Jersey. His

professional interests are in the

Internet technology, service-

oriented architecture, enterprise

application architecture,

multi-platform distributed

applications, and relational

database design.

bm@panix.com

Using open source

19November 2005JDJ.SYS-CON.com

 Along with the classes, we’d have to
create corresponding database tables in
a MySQL database:

CREATE TABLE CUSTOMER (

 ID INT PRIMARY KEY,

 FIRST_NAME VARCHAR(50),

 LAST_NAME VARCHAR(50),

 ADDRESS VARCHAR(150));

CREATE TABLE ORDERS (

 ID INT PRIMARY KEY,

 CUST_ID INT REFERENCES CUSTOMER,

 DATE_PLACED DATE,

 AMOUNT INT);

Creating Database Command Classes
 We’ll create a special package with
classes that implement a Command
design pattern to perform necessary da-
tabase updates. The Command pattern
allows the classes to implement the com-
mon interface executing some particular
command. Examples of the Command
pattern in Java would be classes that
implement the ActionListener interface
with the actionPerformed() method. Our
Command pattern interface for database
integration is presented in Listing 2.
(Listings 3–10 and additional source code
can be downloaded from http://jdj.sys-
con.com.)
 Classes implementing this command
will be performing the actual database
operations for reading and inserting
rows into customer and order tables. The
following use cases will be addressed:
• Customers want to register on the site

in order to place orders (a new row is
created in the customer table)

• Customers can place the order (the
order gets created in the database for
a particular customer)

• Customers can view the orders they
have placed

• Admin can list all the customers

 Based on these use cases, the following
classes have implemented the Databas-
eCommand interface (see Listings 3–6):

 public class CreateCustomer implements

 DatabaseCommand

 public class CreateOrder implements

 DatabaseCommand

 public class ListCustomers implements

 DatabaseCommand

 public class ListCustomerOrders imple-

 ments DatabaseCommand

 Finally, in order to execute our com-
mand classes, we will need to create a
class that would access the database

datasource, obtain a SQL connection,
and then execute a particular database
command. This class will implement a
Singleton design pattern, which we’ll call
CommandExecutor:

Object o = CommandExecutor.getInstance().

executeDatabaseCommand(<<instance of the

particular database command class goes

here>>).

 The CommandExecutor class will
perform the datasource lookup as
follows:

InitialContext ctx = new InitialContext();

Context envCtx = (Context) ctx.

lookup(“java:comp/env”);

ds = (DataSource) envCtx.lookup(“jdbc/

TestDB”);

 This finds the reference to the data-
source we have defined in DBTest.xml by
resolving its reference in a Web deploy-
ment descriptor (web.xml), which we’ll
define in a section below. Listing 7 has the
complete code of the Command Executor
class.

Creating Servlets and JSPs
 The Model-View-Controller (MVC)
paradigm requires the implementation of
three loosely coupled tiers in the
application:
• Model: Business logic and domain

objects of the application
• View: Presentation, user interface
• Controller: Something that sits

between the model and view, allowing
them to interact in a loosely coupled
manner, meaning that the model does
not have to be aware of the view, and
a different view could possibly be used
with the same model.

 So far we have implemented only
Model – domain objects and command
classes. Controller will be implemented as
a servlet and View will be implemented as
JSPs.
 Web Tools provides comprehensive
wizards and editors for creating servlets
and JSPs. We’ll start by creating a package
called “servlet” in our Eclipse project
where all our servlets will reside. Next,
we’ll launch the wizard for creating a
CreateCustomerServlet by selecting File-
New-Other, and then Web-Servlet (see
Figure 4).
 On the screen in Figure 4, we can
specify the Web Project and package
where servlet should reside, and the
next screen will look like Figure 5.

 On this one, we can specify the
optional description for the servlet,
initialization parameters (that can be
retrieved by the servlet in the init()
method from its ServletConfig object),
and URL mapping. Figure 6 shows the
final screen for defining servlet.
 At this point, we are presented with
the capability to specify the interfaces
that this servlet will implement (by de-

 Figure 1

 Figure 2

�������� ������

��������
������������������
�����������������
�����������������

��������
�������������
��������������������������
�����������������

�� ��

 Figure 3

JDJ.SYS-CON.com20 November 2005

Eclipse

fault, all the servlets implement the javax.
servlet.Servlet interface), and the methods
that should be automatically generated
when the servlet is created.
 Just click on Finish and the servlet is
generated. This also creates the follow-
ing entry in the web.xml file:

 <servlet>

 <description>Create Customers

 Servlet</description>

 <display-name>ListCustomers</display-

name>

 <servlet-name>ListCustomers</servlet-

name>

 <servlet-class>servlet.ListCus-

tomersServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>ListCustomers</servlet-

name>

 <url-pattern>/ListCustomers</url-pat-

tern>

</servlet-mapping>

 Another thing that must be added to
web.xml is the resource reference to the
datasource that has been configured in
DBTest.xml:

 <resource-ref>

 <description>DB Connection</descrip-

 tion>

 <res-ref-name>jdbc/TestDB</res-ref-

 name>

 <res-type>javax.sql.DataSource</res-

 type>

 <res-auth>Container</res-auth>

 </resource-ref>

 This XML is necessary for the Com-
mandExecutor datasource lookup code
to work properly.
 In the init() method of ListCustomers-
Servlet, we will get the instance of the
CommandExecutor (see Listing 8), which
will retrieve the data source and cache
it for future use to supply database con-
nections. It’s a good practice to cache a
reference to JNDI data source, because re-
trieving it is a time-consuming operation.
 In the doGet() method (see Listing 9),
we will execute the database command
and forward the list of registered custom-
ers to the JSP to display them.
 In this doGet method, request attribute
“customers” is set to the generic ArrayL-
ist and then RequestDispatcher object is
used to forward a response to customers.
jsp (see Listing 10).

 Using some of the new features of
J2SE 5.0 such as generics and enhanced
“for” loop improves the JSP code by
reducing the amount of Java code in it.
Creating and editing JSP using WTP is
simple. Select the Web content folder of
your Web project, right-click, and select
New – Other from the menu. From the
dialog that appears, select Web – JSP, then
specify the name of the JSP you want to
create. WTP also allows you to select an
existing template for your JSP to be based
on. Three built-in templates are provided
based on HTML, XHTML, and XML.
 In a similar way, we can create other
servlets and JSP pages in our applica-
tion (see the source code), which is
easy to import into Eclipse by using its
File-Import menu. Figure 7 shows the
Web site map of our simple Web ap-
plication. As you can see, users initially
get to index.html page from which they
can perform all the other tasks, such
as creating customers and orders, and
listing existing customers and their
orders.

Debugging Application in
Eclipse with WPT
 The debugging application in Tom-
cat involves launching the server in the
debug mode. To do this, simply right-
click on the Tomcat server and select
“Debug.” To debug some particular line
of code, insert a breakpoint at the line
shown in Figure 8.
 The server currently running in
the debug mode will be automati-
cally selected. After a couple of clicks,
the embedded browser page should
appear. From now on you can debug
the Web application the same way as a
regular Java program.

Deploying the Application to Tomcat
 Once the application has been
tested, it may be ready to deploy. To de-
ploy a Web application, first export it as
a WAR file. Simply select File – Export
– WAR file.
 On the popup window you can check
“Export source files” and “Overwrite
existing file” if you wish to have your
source contained within your WAR file
(it may not be a good idea in produc-
tion) and want to suppress a warning
if the file with the same name (perhaps
a previously exported version) already
exists in the directory and you want to
simply overwrite it.

 Figure 4

 Figure 5

 Figure 6

�
��

��
��
��
��

��
��

��
��
��
��

��
��
��
��

��
��
��

���
���

��
���

��
��
��

��
���

��
��

��
��
��
��

��
��

��
��

���
��

��
��
��
��
���

��
��
��
��

���
��

��
��
��

��
���

��
��
��

���
��
��

��
��
���

��
��

���
��

�
��

��
��
��

��
��
��

��
��
��

��
��
��
���

��
��
��

��
��
��
���
��

���
��
��

��
���

��
��

��
��
�

���
���������������������������������������

��������������������

���������������������������������� �����
����� ����� ����� ������������ ��� �����
�������� �� ������� ���� ����� �� ������ �������
���� ���� ��� ���� ���� ���� ��� �������� ����
�������������������������������������

��
����������� ���������� ��������� �����������
���� ��� ����� ��������� ������������� ������
���� ��������� �� �������� ����������������
�����������������������������

���� ���� ��������� ���� ������� ���� ����
������ ���� ����������������� ����������
����������������������������������
�
��������� �� ������ ������ ����������� �����
��� �������� ��� ��������������������� � ���
��������������������

���

��

���

���

��
����� ������ �������� ��� �������� ��� ������ ������� ����������
���
���
�����������������������������
���

��
������� ������� ����� ��� ��������� ����� ��������� �����������
�������������������������������
���
�������� ���� ���������� ����������� ������� ���� ��� ������
���

��
��
�������������
������� ����������� ���� ����������� ����� ���������� �������
��
������� �������� ����� �� ������� ��������� ����� �� �������� ��� ��������
��

������� �

���
��
���������������� ����� ��������� �������� ������� ���� ��� ���������
��������� ����������������� ����� ������ � ������� ����������� ������
�����������������������������������
�������� ��������� ���� ���� ��������� ������������ ����� ���������
��������������������� ��www.jinfonet.com/jp10.htm

or call (301) 838-5560.

�
��

��
��
��
��

��
��

��
��
��
��

��
��
��
��

��
��
��

���
���

��
���

��
��
��

��
���

��
��

��
��
��
��

��
��

��
��

���
��

��
��
��
��
���

��
��
��
��

���
��

��
��
��

��
���

��
��
��

���
��
��

��
��
���

��
��

���
��

�
��

��
��
��

��
��
��

��
��
��

��
��
��
���

��
��
��

��
��
��
���
��

���
��
��

��
���

��
��

��
��
�

���
���������������������������������������

��������������������

���������������������������������� �����
����� ����� ����� ������������ ��� �����
�������� �� ������� ���� ����� �� ������ �������
���� ���� ��� ���� ���� ���� ��� �������� ����
�������������������������������������

��
����������� ���������� ��������� �����������
���� ��� ����� ��������� ������������� ������
���� ��������� �� �������� ����������������
�����������������������������

���� ���� ��������� ���� ������� ���� ����
������ ���� ����������������� ����������
����������������������������������
�
��������� �� ������ ������ ����������� �����
��� �������� ��� ��������������������� � ���
��������������������

���

��

���

���

��
����� ������ �������� ��� �������� ��� ������ ������� ����������
���
���
�����������������������������
���

��
������� ������� ����� ��� ��������� ����� ��������� �����������
�������������������������������
���
�������� ���� ���������� ����������� ������� ���� ��� ������
���

��
��
�������������
������� ����������� ���� ����������� ����� ���������� �������
��
������� �������� ����� �� ������� ��������� ����� �� �������� ��� ��������
��

������� �

���
��
���������������� ����� ��������� �������� ������� ���� ��� ���������
��������� ����������������� ����� ������ � ������� ����������� ������
�����������������������������������
�������� ��������� ���� ���� ��������� ������������ ����� ���������
��������������������� ��www.jinfonet.com/jp10.htm

or call (301) 838-5560.

JDJ.SYS-CON.com22 November 2005

 Once the WAR file is exported, deploying it to Tomcat
can be done through the Tomcat 5.0 administrative
console, which in our case is located at http://local-
host:8080/manager/html.
 The console displays currently deployed applications
and allows you to deploy new, undeploy, and reload
existing applications.
 Once deployed, we need to make sure that our
DBTest.xml file is still there under $TOMCAT\conf\cata-
lina\localhost with all the correct datasource defini-
tions. If it’s not, replace it with the correct one that have
been saved by you before.
 Now, our application is ready to run, so point your
browser at http://localhost:8080/DBTest/.
 Figure 9 shows what the list of orders for a registered
customer will look like.

Summary
 I’ve discussed the development, debugging, and
deployment of the Web-based database application using
J2SE 5.0, Eclipse Web Tools, the Tomcat application server,

and the MySQL database. WTP is still in its beta release, so
some of its wizards and capabilities may pose problems;
however, we were able to successfully debug and deploy
the Web application.

Eclipse

 Figure 7

����������

��������������������

�������������������������

���������������������

������������������

�������������

����������

�����������������

��������������������

 Figure 8

 Figure 9

Listing 1
<?xml version=ʼ1.0ʼ encoding=ʼutf-8ʼ?>

<Context displayName=”DBTest” docBase=”C:/Program Files/Apache

Software Foundation/Tomcat 5.0/webapps/DBTest” path=”/DBTest”

workDir=”work\Catalina\localhost\DBTest”>

<Resource auth=”Container” description=”DB Connection” name=”jdbc/

TestDB” type=”javax.sql.DataSource”/>

<ResourceParams name=”jdbc/TestDB”>

 <parameter>

 <name>factory</name>

 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>

 </parameter>

 <parameter>

 <name>url</name>

 <value>jdbc:mysql://localhost/test?autoReconnect=true</value>

 </parameter>

 <parameter>

 <name>password</name>

 <value></value>

 </parameter>

 <parameter>

 <name>maxActive</name>

 <value>100</value>

 </parameter>

 <parameter>

 <name>maxWait</name>

 <value>5000</value>

 </parameter>

 <parameter>

 <name>driverClassName</name>

 <value>com.mysql.jdbc.Driver</value>

 </parameter>

 <parameter>

 <name>username</name>

 <value>ODBC</value>

 </parameter>

 <parameter>

 <name>maxIdle</name>

 <value>2</value>

 </parameter>

 </ResourceParams>

</Context>

Listing 2

package command;

import java.sql.Connection;

import java.sql.SQLException;

public interface DatabaseCommand {

 public Object executeDatabaseOperation(Connection conn) throws

SQLException ;

JDJ.SYS-CON.com24 November 2005

he publicity that AJAX grabbed over the last half a year is
based on closing the gap between the Web applications
and the desktop applications, combining the “reach”
and “rich.” At the same time, the gap between the tech-

nological level of AJAX and what corporate developers expect
in their modern arsenal is really astonishing. After all, AJAX is
neither a tool nor a platform. There is no AJAX standards com-
mittee or community process in place. While software vendors
are crafting proprietary development platforms on top of AJAX
(which pretty much means “from scratch”), early adopters of
AJAX are left on their own.
 In Part 1 (JDJ, Vol. 10, issue 9) we touched on the foundation
of AJAX – the ability to establish script-to-server communica-
tion. This is what makes HTML pages dynamic and responsive.
Does it mean we are ready to kick-off our own version of Yahoo
mail? No, we are not. Here is why: AJAX is a mixed blessing. On
one hand it enables us to create rich, desktop-class applica-
tions on the Web. On the other, if we compare “page-flipping”
Web applications with the client/server or Swing ones, the
development practices are not quite the same. What about
management expectations? We’ll need to get used to the fact
that it takes time to build a rich UI. The more flexibility with
more permutations the user is allowed – the more time it takes.
 The answer, of course, is component libraries, frameworks,
and industrial-strength tools. Leaving tools aside, this article
concentrates on what is available for AJAX enthusiasts today.
Addressing a need to build reusable business components, it
focuses on the “hidden” object-oriented power of JavaScript.
Also, by addressing a need to build custom-rich UI compo-
nents, it illustrates a convenient way to encapsulate presenta-
tion logic in custom client-side HTML tags.

AJAX Language: Object-Oriented JavaScript
 By definition, JavaScript is the language of classic AJAX.
Unlike Java, JavaScript does not enforce the OO style of coding.
That said, it’s surprising how often it’s overlooked that Java-
Script fully supports all the major attributes of an OO language:
inheritance, polymorphism, and encapsulation. Douglas
Crockford even named Java Script “The World’s Most Misun-
derstood Programming Language.” Let’s review the object-ori-
ented side of JavaScript.

Data Types
 In Java, a class defines a combination of data and its associ-

ated behaviors. While JavaScript reserves the class keyword, it
does not support the same semantic as in conventional OOP
languages.
 It may sound strange but in JavaScript, functions are used as
object definitions. By defining a function in the example below
you, in fact, define a simple empty class - Calculator:

function Calculator() {}

 A new instance is created the same way as in Java – by using
the new operator:

var myCalculator = new Calculator();

 The function not only defines a class, but also acts as a
constructor. The operator new does the magic, instantiating an
object of class Calculator and returning an object reference in
contrast to merely calling the function.
 Creating an empty class is nice but not really useful in real
life. We are going to fill-in the class definition using a Java-
Script prototype construct. JavaScript uses prototype to serve
as a template for object creation. All prototype properties and
methods are copied by reference into each object of a class, so
they all have the same values. You can change the value of a
prototype property in one object, and the new value overrides
the default, copied from the prototype, but only in that one
instance. The following statement will add a new property to
the prototype of the Calculator object:

Calculator.prototype._prop = 0;

 Since JavaScript does not provide a way to syntactically de-
note a class definition, we’ll use the with statement to mark the
class definition boundaries. This will also make the example
code smaller as the with statement is allowed to perform a
series of statements on a specified object without qualifying
the attributes.

function Calculator() {};

with (Calculator) {

 prototype._prop = 0;

 prototype.setProp = function(p) {_prop = p};

 prototype.getProp = function() {return _prop};

}

Igor Nys is a director of

technology solutions at

EPAM Systems. He was

closely involved in the

software development

based on XMLSP

technology – one of

the AJAX pioneers.

igordnys@gmail.com

by Igor Nys, Victor Rasputnis,
and Anatole Tartakovsky

T

A peek into modern technologies
for browser-based applications

Feature

PART 2

Victor Rasputnis is an

IT consultant who has

been working in Java,

PowerBuilder, C, Assembler

- whatever language has

appeared since 1976. Victor

is one of the creators of

XMLSP, the product that

pioneered AJAX in 1999.

victorrasputnis@teamcti.com

25November 2005JDJ.SYS-CON.com

 So far we have defined and initialized the public _prop vari-
able as well as provided getter and setter methods for it.
 Need to define a static variable? Just think of the static vari-
able as being a variable owned by the class. Because classes in
JavaScript are represented by function objects, we just need to
add a new property to the function:

Calculator.iCount = 0;

 Now that the iCount variable is a property of the Calcula-
tor object, it will be shared between all instances of the class
calculator.

function Calculator() {

 Calculator.iCount++;

};

 The above code will count all created instances of the class
Calculator.

Encapsulation
 Using “Calculator”, as defined above, permits access to all
the “class” data, increasing the risk of name collisions in inher-
ited classes. We clearly need encapsulation to view objects as
self-contained entities.
 A standard language mechanism of data encapsulation is
private variables. And a common JavaScript technique for
emulating a private variable is to define a local variable in the
constructor, so that this local variable is accessible exclu-
sively via getter and setter – inner functions of the very same
constructor. In the following example, the _prop variable is
defined within the Calculator function and is not visible out-
side of the function scope. Two anonymous inner functions,
assigned to setProp and getProp attributes, provide access to
our “private” variable. Also, please note the use of this, quite
similar to how it is used in Java:

function Calculator() {

 var _prop = 0;

 this.setProp = function (p){_prop = p};

 this.getProp = function() {return _prop};

};

 What is often overlooked is the cost of such encapsulation
in JavaScript. It can be tremendous, because inner function
objects get repeatedly created for each instance of the “class”.
 Accordingly, since constructing objects based on the pro-
totype is faster and consumes less memory, we cast our vote
in favor of public variables wherever performance is critical.
You can use naming conventions to avoid name collisions, for
example, by prefixing public variables with the class name.

Inheritance
 At first glance, JavaScript lacks support for the class hierar-
chy similar to what programmers of conventional object-ori-
ented languages expect from the modern language. However,
although JavaScript syntax does not support class inheritance
as in Java, inheritance can still be implemented by copying an
instance of a previously defined class into the prototype of the
derived one.
 Before we provide an illustration, we need to introduce
a constructor property. JavaScript makes sure that every
prototype contains constructor, which holds a reference to the

constructor function. In other words, Calculator.prototype.
constructor contains a reference to Calculator().
 Now, the code below shows how to derive the class
ArithmeticCalculator from the base class Calculator. “Line
1” results in borrowing all properties of the Calculator, while
“Line 2” restores the value of the prototype, constructor back to
ArithmeticCalculator:

function ArithmeticCalculator() { };

with (ArithmeticCalculator) {

 ArithmeticCalculator .prototype = new Calculator(); //Line 1

 prototype.constructor = ArithmeticCalculator; //Line 2

}

 Even if the example above looks like a composition rather
than inheritance, the JavaScript engine knows about the pro-
totype chain. In particular, the instanceof operator will work
correctly with both the base and derived classes. Assuming
you create a new instance of a class ArithmeticCalculator:

var c = new ArithmeticCalculator;

expressions c instanceof Calculator and c instanceof Arithmet-
icCalculator will both evaluate to true.
 Notice, that the constructor of the base class in the example
above is called at the point when the ArithmeticCalculator pro-
totype is initialized and not when an instance of the derived
class is created. This could have unwanted side effects and you
should consider creating a separate function for initialization
purposes. As the constructor is not a member function, it can’t
be called through this reference directly. We will need to create
a “Calculator” member function to be able to call super:

function Calculator(ops) { …};

with (Calculator) {

 prototype.Calculator = Calculator;

}

 Now we can write an inherited class that explicitly calls the
constructor in the base class:

function ArithmeticCalculator(ops) {

 this.Calculator(ops);

};

with (ArithmeticCalculator) {

 ArithmeticCalculator .prototype = new Calculator;

 prototype.constructor = ArithmeticCalculator;

 prototype.ArithmeticCalculator = ArithmeticCalculator;

}

Polymorphism
 JavaScript is a non-typed language where everything is
an object. Accordingly, if there are two classes A and B, both
defining method foo(), JavaScript will allow polymorphic
invocation of foo() across instances of A and B even if there is
no hierarchical relation (albeit implementational) whatsoever.
From that perspective, JavaScript provides a wider polymor-
phism then Java. The flexibility, as usual, comes at a price. In
this case, it is a price of delegating the type checking job to
application code. Specifically, if there is a need to check that a
reference indeed points to a desired base class, it can be done
with the instanceof operator.

Anatole Tartakovsky is

a New York-based software

developer, lecturer,

consultant, and author.

He is currently working

as the CTO at Computer

Technology, Inc., focused

on developing AJAX/FLEX

solutions for the financial

and retail industries.

anatolet@teamcti.com

JDJ.SYS-CON.com26 November 2005

 On the other hand, JavaScript doesn’t check parameters
in the function calls, which prevents from defining poly-
morphic functions with the same name and different pa-
rameters (and let the compiler choose the right signature).
Instead, JavaScript provides an argument object – Java 5
style – within a function scope that allows you to imple-
ment a different behavior depending on the parameter’s
type and quantity.

Example
 Listing 1 implements a calculator that calculates expres-
sions in a reverse Polish notation. It illustrates the main
techniques described in the articles and also shows the
usage of the unique JavaScript features, such as accessing
object properties as an array element for a dynamic func-
tion call.
 To make Listing 1 work we also need to provide a piece
of code that instantiates the calculator objects and calls the
evaluate method:

var e = new ArithmeticCalcuator([2,2,5,”add”,”mul”]);

alert(e.evaluate());

AJAX Component Authoring
 All AJAX component authoring solutions known today
can be logically divided into two groups. The first group
specifically targets the seamless integration with the HTML-
based UI definition. The second group drops HTML as a UI
definition language in favor of certain XML. In this article we
illustrate one approach from the first group, an analog to JSP
tags, albeit in the browser. These browser-specific compo-
nent authoring extensions are called element behaviors in
the IE case or extensible bindings in the case of the latest
versions of Firefox, Mozilla, and Netscape 8.

Custom Tag Dialects
 Internet Explorer, starting with version 5.5, enables the
JavaScript authoring of custom, client-side HTML elements.
Unlike JSP tags, these objects are not preprocessed into
HTML on the server side. Rather, they’re legitimate exten-
sions of a standard HTML object model and everything,
including control construction, happens dynamically on the
client. Similarly, Gecko-engine based browsers can dynami-
cally decorate any existing HTML element with a reusable
functionality.
 It’s possible, therefore, to build a library of rich UI com-
ponents with methods, events, and attributes that will have
HTML syntax. Such components can be freely mixed with
standard HTML. Internally, these components will commu-
nicate with application servers, AJAX style. In other words,
it’s possible (and relatively simple) to build your own AJAX
object model.
 The IE flavor of this approach is called HTC or HTML
components; the Gecko version is called XBL – eXtensible
Bindings Language. For the purposes of this article, we’ll
focus on IE.

Enter the HTML Components – HTC
 HTC or HTML components are also called behaviors. In
turn they are divided into attached behaviors that deco-

rate any existing HTML element with a set of properties,
events, and methods, and element behaviors that look like
an extended set of custom HTML tags to the hosting page.
Together, element and attached behaviors provide a simple
solution for authoring both components and applications.
Here we’ll illustrate the most comprehensive case, element
behaviors.

Data-Bound Checkbox Control
 As an illustration of element behavior, we’ll construct a
custom data-bound checkbox. The rationale behind building
such a control is that a standard HTML checkbox has several
noticeable shortcomings:
• It requires application code to map the value of the

“checked” attribute into business domain values, such
as “Y[es]”/”N[o]”, “M[ale]”/”F[emale]”, etc. The HTML
checkbox uses “checked” contrary to many other HTML
controls using “value”.

• It requires application code to maintain the state of the
control (modified versus not modified). This is actually a
common problem with all HTML controls.

• It requires application code to create an associated label
that should accept click and change the state of the
checkbox accordingly.

• The standard HTML checkbox doesn’t support “valida-
tion” events to allow the canceling of a GUI action under
certain application conditions.

 To settle on a syntax, let’s say that a sample usage of the
control we are building could look the following way:

<checkbox id=”cbx_1” value=”N” labelonleft=”true”

label=”Show Details:” onValue=”Y” offValue=”N”/>

 In addition, our control will support the cancelable event
onItemChanging and the notification event onItemChanged.

Custom Tag Definition
 Structurally, a custom tag is a file with an HTC extension
that describes its properties, methods, and events between
<PUBLIC:COMPONENT> and </PUBLIC:COMPONENT>.
 To define a custom CHECKBOX tag, we create a file check-
box.htc as in the following snippet where the first line sets
the tag name of the component:

<PUBLIC:COMPONENT NAME=”cbx” tagName=”CHECKBOX”>

<PROPERTY NAME=”value” GET=”getValue” PUT=”putValue” />

// Here we place all other properties of the component

<METHOD NAME=”show” />

// Here we place all other methods of the components

<EVENT NAME=”onItemChanging” ID=”onItemChanging”/>

// Here we place all other events that component will fire to

 application

<ATTACH EVENT=”oncontentready” HANDLER=”constructor” />

// Here we place all other events that component handles itself

<SCRIPT >

// Here we place all methods, properties getters and setters and

 event handlers

</SCRIPT>

</PUBLIC:COMPONENT>

Feature

Premium PDF Technology
tools.compdf -

World leader in PDF
programming technology

Contact:
pdfsales@pdf-tools.com

PDF Tools AG is a world leader in PDF
programming technology, delivering
reliable PDF products to international
customers in virtually all market
segments.

PDF Tools AG provides server-based
software products designed specifically
for developers, integrators, consultants,
customizing specialists and IT-depart-
ments. Thousands of companies world-
wide use PDF Tools AG's products directly
and tens of thousands more use the
technology indirectly via our growing
network of OEM partners. The tools
are easily embedded into application
programs and are available for a
multitude of operating system
platforms.

The 3-Heights™ family of PDF
programming components

PDF Tools AG has spent years addressing your needs and is proud to offer the
newest line of PDF tools designed for customers relying on PDF technology
for their critical business processes:

Do your requirements go beyond the standard
features offered by your current PDF products?

Are you using PDF technology
in your daily business?

or visit us at:
http://www.pdf-tools.com

PDF Tools AG has spent years addressing your needs and is proud to offer the

Do your requirements go beyond the standard
features offered by your current PDF products?

Are you using PDF technology

http://www.pdf-tools.com

JDJ.SYS-CON.com28 November 2005

Custom Tag Use Case
 While the contents of the HTC file matter a lot, the name
of the file is irrelevant, although, ultimately, the URL to the
HTC file needs to be specified using the IMPORT instruc-
tion. It has to be done before the corresponding custom tag
is mentioned for the first time (on the page). Here is how the
simplest possible page utilizing a custom checkbox might
look, assuming the page and the HTC file are located in one
folder:

<HTML xmlns:myns>

<?IMPORT namespace=”myns” implementation=”checkbox.htc” >

<BODY>

<myns:checkbox id=ʼcbx_1ʼ label=ʼHelloʼ/>

</BODY>

</HTML>

 Please notice how custom CHECKBOX has been mapped
to a nondefault namespace “myns” in the opening HTML
tag. The IMPORT instruction performs a synchronous load
of the HTC into the browser’s memory and also instructs the
browser how to perform name resolution for the appropriate
namespace (HTC to namespace association can be many-to-
one).

Constructor of the Custom Tag
 The best way to initialize HTC, once it’s loaded, is to process
the “oncontentready” event. Accordingly, we define a handler
function, which for sheer clarity is called constructor:

<ATTACH EVENT=”oncontentready” HANDLER=”constructor” />

 The logic of constructor() is simple: concatenate a regular
HTML checkbox and HTML label in the order dependent
on the value of property labelonleft (see property definition
below):

function constructor() {

 // We will add an HTML checkbox and label to the element body

 // See Listing 2 for details

}

Defining Custom Tag Properties
 To define property labelonleft, we add one more line to the
<PUBLIC:COMPONENT> section:

<PROPERTY NAME=”labelonleft” VALUE=”true”/>

 Please note that this property does not contain getter
and/or setter methods. Properties onValue and offValue that
provide the mapping of the checkbox status into a business
value domain also don’t need getters and setters:

<PROPERTY NAME=”onValue” VALUE=”true”/>

<PROPERTY NAME=”offValue” VALUE=”false” />

 However, property checked is defined with both getter and
setter:

<PROPERTY NAME=”checked” GET=”getChecked” PUT=”putChecked” />

 Accordingly, we have definitions for both methods in the
<SCRIPT> section. As you can see, setter putChecked(), which
is triggered every time checked is modified, sets the value
property to one of two variants: onValue or OffValue. Please
note that putChecked() will get triggered not only by the script
on the checkbox-hosting page, but also by any assignment to
checked done inside this very checkbox.htc.

var _value;

function putChecked(newValue) {

 value = (newValue?onValue:offValue);

}

function getChecked(){

 return (_value == onValue);

}

Defining Events for the Custom Tag
 Let’s look at the definition of onItemChanging and onItem-
Changed events and how these events are being fired and
processed inside the setter for value property (see Listing 2).
 Method putValue() has a couple of points of interest. First,
it can be called during the parsing on the CHECKBOX tag, as
long as the HTML value attribute is specified. That’s why we
have a separate logic branch for not constructed objects, to
differentiate the process of construction from a reaction to a
user click. Second, we illustrate here the creation and process-
ing of the custom event onItemChanging, which allows the
application to cancel (block) the action. Please note that both
clicking as well as programmatic assignment to the value can
get cancelled this way.

Event Canceling
 To cancel the event, an application should intercept the
event and set event.returnValue to false. The schematic snip-
pet of code illustrating how the application would cancel the
processing is presented below:

cbx_1::onItemChanging() {

.

if (canNotBeAllowed) {

 event.returnValue=false;

.

}

 If the event is not cancelled, putValue() sets the internal,
plain HTML checkbox’s checked property as per the current
value: if that is equal to onValue, the internal checkbox will
get checked; if it is equal to offValue (there is no third option),
unchecked (the full listing is presented in Listing 2).

HTML Internals of the CHECKBOX
 The painting of our control is done by the helper functions
addLabel() and addCheckBox() and is called from within
a constructor(). These functions inject HTML inside the
element’s innerHTML (element is the analog for this in HTC
parlor). The injected HTML, in the simplified form, looks like
the following:

<LABEL for=cb_{uniqueID}>Show Details:</LABEL>

<INPUT id=cb_{uniqueID} type=checkbox />

Feature

29November 2005JDJ.SYS-CON.com

where uniqueID is a unique (within a page) string literal gen-
erated by IE, which identifies the instance of the HTC.

Encapsulation … Again
 There is one shortcoming in our CHECKBOX. The way we
built it, the HTML injected during the constructor() contrib-
utes to the DOM of the page that hosts the HTC. Also global
JavaScript variables like_value fall into the global scope of
the document they’re included in. This is dangerous since
we run into the possibility of name clashes: the most obvi-
ous case is more than one instance of the same control. In
addition, it presents a possibility that our control may ac-
cidentally reference other objects with the same names and
vice versa.
 To put it simply, a special mechanism is required to enable
a truly modular approach for object authoring. Fortunately,
HTC technology supports an intelligent answer – viewLink.
 The easiest way to declare a control as encapsulated is to
put one extra declaration between opening and closing PUB-
LIC:COMPONENT tags:

<PUBLIC:DEFAULTS viewLinkContent/>

 Instantly, the control becomes encapsulated; it has its own
HTML document tree, atomic to the master document. Every
instance of the object has its own set of instantiated values
and only public methods and properties can be accessed by
the outside code. In other words, the viewLink mechanism
fully enables the design and implementation of sophisti-
cated Web applications using a true OO component–based
approach.
 In particular, we can simplify our code by removing
uniqueID suffixes from the definition of internal checkboxes
and HTML labels, since we are not afraid of name clashes
anymore. Accordingly, we may replace the line:

 eval(ʻcb_ʼ+uniqueID).checked = (_value == onValue);

with the

 cb.checked = (_value == onValue);

as well as change addCheckbox() and addLabel() accordingly.

Conclusion
 Since the AJAX race has just started, there are no AJAX
standards and no commonly accepted RAD tools you can
rely on to build your applications. While software vendors
have a long way to go to create the robust development
platforms, AJAX enthusiasts can prepare by encapsulating
reusable blocks of code as business components with a well-
defined API.
 Navigating in this direction, this article outlined the OO
“powers” of the AJAX language – JavaScript. It also illus-
trated one of the available component-authoring strategies
– client-side custom tags technology. While we presented
only IE-specific custom tags, we also provide a download-
able example of extensible bindings example for the Mozilla
browser. All article-related examples can be downloaded
from http://www.ajaxmaker.com/JDJ/AJAX/partII.html.

Listing 1
// Constructor
function Calculator(ops) {
 this.ops = ops;
}
with (Calculator) {
 // Make constructor available as a member function
 prototype.Calculator = Calculator;
 // Member functions
 prototype.evaluate = function () {
 this.opsStack = new Array();
 for (var i = 0; i < this.ops.length; i++) {
 var op = this.ops[i];
 if (typeof op == “number”)
 this.push(op);
 else if (typeof this[op] == “function”)
 this[op]();
 }
 return this.pop();
 };
 prototype.pop = function () {return this.opsStack.pop();}
 prototype.push = function (val) {this.opsStack.push(val);}
}

//Constructor
function ArithmeticCalcuator(ops) {
 this.Calculator(ops); // super
};
with (ArithmeticCalcuator) {
 // Establish inheritance
 ArithmeticCalcuator.prototype = new Calculator();
 prototype.constructor = ArithmeticCalcuator;
 // Make constructor available as a member function
 prototype.ArithmeticCalcuator = ArithmeticCalcuator;
 // Member functions
 prototype.add = function () {this.push(this.pop() + this.pop()); }
 prototype.sub = function () {this.push(this.pop() - this.pop());}
 prototype.mul = function () {this.push(this.pop() * this.pop());}
 prototype.div = function () {this.push(this.pop() / this.pop());}

}

Listing 2
<PUBLIC:COMPONENT NAME=”cbx” tagName=”CHECKBOX”>
<PROPERTY NAME=”label” />
<PROPERTY NAME=”checked” GET=”getChecked” PUT=”putChecked” />
<PROPERTY NAME=”labelonleft” VALUE=”true”/>
<PROPERTY NAME=”value” GET=”getValue” PUT=”putValue” />
<PROPERTY NAME=”onValue” VALUE=”true”/>
<PROPERTY NAME=”offValue” VALUE=”false”/>
<METHOD NAME=”show”/>
<EVENT NAME=”onItemChanging” ID=”onItemChanging”/>
<EVENT NAME=”onItemChanged” ID=”onItemChanged” />
<ATTACH EVENT=”oncontentready” HANDLER=”constructor” />
<SCRIPT >

 var _value;

 function constructor() {
 var s;
 s = ʻ<INPUT name=”cb_ʼ+ uniqueID + ʻ” id=”cb_ʼ + uniqueID + ʻ” type=”checkbox”
ʻ +
 ʻonclick=”ʼ + uniqueID + ʻ.checked= +cb_ʼ + uniqueID+ ʻ.checked” ʻ;
 if(_value == onValue)
 s +=ʼ checked=”true” ʻ;
 s+= “/>”;
 element.insertAdjacentHTML(ʻafterBeginʼ, s);
 element.insertAdjacentHTML((labelonleft == “true”)?ʼafterBeginʼ:ʼbeforeEndʼ,
 ʻ<LABEL for=”cb_ʼ + uniqueID+ ʻ”>ʼ + label + ʻ</LABEL>ʼ);
 }

 function putChecked(newValue) {
 value = (newValue?onValue:offValue);
 }
 function getChecked(){
 return (_value == onValue);
 }

 function getValue(){
 return _value ;
 }
 function putValue(newValue) {
 if (window.event == null)
 _value = newValue; /* initial*/
 else if (_value != newValue) {
 var oEvent = createEventObject();
 oEvent.newValue = newValue;
 oEvent.returnValue = true;
 onItemChanging.fire(oEvent);
 if (oEvent.returnValue)
 _value = newValue;
 eval(ʻcb_ʼ+uniqueID).checked= (_value == onValue);
 if (_value == newValue)
 onItemChanged.fire(oEvent);
 }
 }

 function show(bCmdShow){
 style.visibility= (bCmdShow?ʼvisibleʼ:ʼhiddenʼ) ;
 }

</SCRIPT>
</PUBLIC:COMPONENT>

JDJ.SYS-CON.com30 November 2005

n most cases I’m a patient and
tolerant person. Once you get to
know me, I’m easy to get along
with, occasionally complex, but

not very often. My patience and tol-
erance has pretty much gone out the
window in the last week or so. It all
stems from two technologies: Ruby
On Rails (RoR) and AJAX.
 Now let’s be fair, no one really
gave a garbage-collected object
about AJAX until those boffins at
Google brought us the “suggest” and
maps utilities (this is what happens
when you give programmers spare
time; they come up with good stuff).
What followed were Web sites, APIs,
tutorials, and more applications
than you can shake a stick at. JavaS-
cript used to be a dirty word among
Java programmers a number of years
ago. At one point you may as well
have called JavaBlogs JavaScript-
Blogs.
 We used to laugh, have secretly
coded words when talking among Ja-
vaScript programmers, just to make
them feel out of place. JavaScript
was the annoying little brother that
got in the way when you were trying
to impress your new girlfriend. Now
VCs are rubbing their hands together
waiting to throw money at the next
line of AJAX-fueled apps. For about
two days I was thinking, “I may
actually have to learn some of this
stuff,” then I came to my senses and
thought better of it.
 My main problem with all of this
goes back to my original problem
with all JavaScript things from years
ago – browser compatibility. I still
can’t, to this day, get an AJAX app
to work on my Pocket PC version
of Internet Explorer (in fact I still
can’t get a decent JVM for it ei-
ther). Another issue for me is that
everyone has conveniently forgotten
about testing any of this stuff with
a dial-up connection (or at least it’s
never mentioned). Is a user seriously

going to sit and wait for the data to
bounce to and fro every time the
mouse moves? Don’t get me wrong,
there are some real nice applications
about, but at the end of the day AJAX
is still the name of a cream cleanser
in the UK. I usually wash the sink
with it.
 The arguments, agreements,
and articulate announcements
about RoR are also currently, in my
opinion, spiraling out of control. It
sort of reminds me of the same sort
of arguments regarding Python and
Java a couple of years ago. Ruby, as
a language, has been kicking about

for years but never really broke into
the mainstream. RoR came about
from a project management tool
for 37 Signals. Now even the most
seasoned Web app programmers
can be in a complete giddy spell on
how they can knock up a MVC-type
Web app in, well, a bit less time than
before.
 I thought we’d gone beyond this
“technology x is better than tech-
nology y” debate when .NET was
supposed to be the biggest threat to
humanity. We all gave it six months
to blow over and then the landscape
was quiet once again. Now the
soothsayers are out again with their

scythes of code reduction telling
me that RoR will replace Java in the
way that Web apps are done. The
Java camp seems to be extremely
defensive and a touch prickly toward
the arguments, any argument in
fact, and in some respects it’s how
we react to these comments that
make us easy prey with the emerging
technologies.
 As far as the landscape goes,
there will be a place for all these
technologies. Some will be adopted
more than others. Would you write a
multi-language banking application
in RoR? I wouldn’t. What I do keep in
my tool belt is a fresh open mind to
new things. I looked at RoR, played
with it, tried a few things, and
thought, “Not for me now” and un-
installed it. More to the point I have
more than enough paid work in Java,
PHP, and a heap of other things. So I
tend to go where the money is call-
ing to make sure there’s food on the
table.
 Where do I stand in all of this?
AJAX, well I’ve seen good uses and
some pretty dreadful ones too. These
are just the baby steps of what’s to
come with AJAX-driven apps. I still
need some convincing whether
we’ll all be lapping up AJAX apps to
every Web site we ever go to. And
where there is JavaScript, there are
browser-compatibility issues.
 With Ruby On Rails, I’m taking
a back seat for six months to see
what happens. I don’t jump on these
things easily, just like I didn’t jump
on Python. There is a place for it but
I still think it’s in the realms of the
developer fantasy of “this might take
over the world one day,” when the
rest of people really couldn’t give
a hoot about what language it was
written in.
 As a client said to me yesterday, “I
don’t care what you use, as long as it
works.” I feel the same. Enjoy what
you enjoy.

Core and Internals Viewpoint

Jason Bell
‘As Long As It Works’

I

Jason Bell is founder of

Aerleasing, a B2B auction

site for the airline industry.

He has been involved in

numerous business

intelligence companies and

start ups and is based in

Northern Ireland.

jasonbell@sys-con.com

Premium PDF Technology
tools.compdf -

World leader in PDF
programming technology

Contact:
pdfsales@pdf-tools.com

PDF Tools AG is a world leader in PDF
programming technology, delivering
reliable PDF products to international
customers in virtually all market
segments.

PDF Tools AG provides server-based
software products designed specifically
for developers, integrators, consultants,
customizing specialists and IT-depart-
ments. Thousands of companies world-
wide use PDF Tools AG's products directly
and tens of thousands more use the
technology indirectly via our growing
network of OEM partners. The tools
are easily embedded into application
programs and are available for a
multitude of operating system
platforms.

The 3-Heights™ family of PDF
programming components

PDF Tools AG has spent years addressing your needs and is proud to offer the
newest line of PDF tools designed for customers relying on PDF technology
for their critical business processes:

Do your requirements go beyond the standard
features offered by your current PDF products?

Are you using PDF technology
in your daily business?

or visit us at:
http://www.pdf-tools.com

PDF Tools AG has spent years addressing your needs and is proud to offer the

Do your requirements go beyond the standard
features offered by your current PDF products?

Are you using PDF technology

http://www.pdf-tools.com

JDJ.SYS-CON.com32 November 2005

igel Cheshire’s company,
Enerjy, has just launched
Enerjy CQ2, a code quality
solution for Java develop-

ment managers. In this exclusive
Q&A with JDJ, Cheshire contends
that software quality from 2002 to
2004 has diminished: “As an indus-
try, it’s time to take this problem
seriously.”

JDJ: Nigel, thanks for agreeing to talk
with us. Let’s get right to it: Could
you very quickly just “situate” Enerjy
in the i-Technology space, say what
the company does and how long it’s
been doing it?

Nigel Cheshire: Enerjy is a division
of Teamstudio Group, which has
been around since the early part
of 1996. We provide software integ-
rity solutions to Java development
organizations and, before you ask,
 I can tell you that software integ-
rity, in a nutshell, means finding
the problems in your software be-
fore they become problems in
your business. In other words,
it’s about early detection and
correction, and raising the qual-
ity of the software development
process.

JDJ: What then is the latest release/
launch/product from Enerjy?

NC: We’ve just launched Enerjy CQ2,

which is a code quality solution for
Java development managers. We’d
been in the business of providing
code quality tools to Java developers
for a while and, after much feedback
from our customer base, came to
realize that we were barking up
the wrong tree. The problem with
our approach was that it’s not
developers who truly the shoulder
responsibility for the quality of the
finished application – it’s the devel-
opment manager. When we looked
at what was available by way of
tools to help development managers
monitor and measure the quality of
code as it is being written, we found
that almost nothing exists today.
Hence Enerjy CQ2

 But Enerjy CQ2 is not just a tool,
it encapsulates a new process for

development managers to help
them better manage and coach their
teams. We call it Precision Team
Management, which in essence
means the three-step process of:
1. Acquiring data from the project

team’s activities
2. Analyzing that data to detect key

performance indicators
3. Acting on the results in terms of

coaching developers to improve
their metrics

JDJ: Why “CQ2”?

NC: We put the finest marketing
brains on the planet on to the
task of coming up with a name
for our new product, as you can
tell. I guess you could say that
 “CQ” stands for “Code Quality”

Q&A

Interview by Jeremy Geelan

Precision
Team Management

N

Jeremy Geelan is group

publisher of SYS-CON Media

and is responsible for the

development of new titles and

technology portals for the

firm. He regularly represents

SYS-CON at conferences and

trade shows, speaking to

technology audiences both in

North America and overseas.

jeremy@sys-con.com

Interview with Nigel Cheshire, CEO, Enerjy Software

Nigel Cheshire
CEO, Enerjy Software

Software development is still considered an ‘art,’
and it’s time to change that”“

JDJ.SYS-CON.com34 November 2005

and “ 2” implies it’s the second gen-
eration. But, at the end of the day,
it’s just a name!

JDJ: What are the main drivers
behind the problem that Enerjy CQ2
solves?

NC: Our industry is facing a credibil-
ity crisis. You’ll remember that
back in 2002, the NIST issued a
report estimating the annual cost of
software errors to the U.S. economy
at $59.5bn. You might think that
would be a wake-up call to the
industry. Well, the interesting thing
to me is that the Standish Group
reports that in the two years follow-
ing the NIST report, in other words
from 2002 to 2004, software quality
actually diminished! So, as an in-
dustry, it’s time to take this problem
seriously.

JDJ: Can you unpack “Precision Team
Management” for us, why’s that the
key value proposition here?

NC: As I said earlier, it’s a three-
step process: Acquire, Analyze, Act.
The key to implementation success
for this process is that it has zero
negative impact on the develop-
ment process itself – in other words,
the members of the development
team continue to work exactly as
they did before. It allows the man-
ager to define what quality means
in their organization – in terms of
coding standards, unit test results,
testing coverage percentages, and
so on, and then to set thresholds that
trigger alerts if those thresholds are
crossed. The feedback loop occurs
when the manager acts on those
alerts, coaching the developers
on how to improve their develop-
ment hygiene and thereby raising
the quality of the overall code base,
as well as the overall performance
of the team.

JDJ: How can it be that Java code
quality, and software integrity in
general, in these SoX-conscious times,
has lagged so far behind as a corpo-
rate priority?

NC: We are still an immature in-
dustry. Look at virtually any other
business process and you will find
well-understood and documented
standards and procedures for ensur-
ing quality. The problem is no one
yet really knows what KPIs to capture
from a development team. Software
development is still considered an
“art,” and it’s time to change that,
but that doesn’t mean trying to
shoehorn the software develop-
ment process into a manufacturing
discipline. There’s a reason software
is called software – it’s supposed to
be soft. In other words, it needs to
be agile – to be organic, to the point

where as business processes change,
the business software that helps to
automate those processes changes
too. As a result, we need processes
such as Precision Team Management
that will bring control to the environ-
ment, without being stifling.

JDJ: Is it ever possible to actually get
to the point where code generates zero
errors?

NC: Dijkstra famously pointed out
that software testing cannot prove
that there are no errors in your code;
it can only prove that they exist. But
that is not a reason not to do every-
thing possible to squeeze bugs out
as early in the development process,
and monitor and measure those indi-
cators of quality that we already have
reasonably easy access to.

JDJ: Even though development man-
agers are the ones who need Enerjy
CQ2, how does Enerjy go about mak-
ing the necessary business case for

using Enerjy CQ2 in preference to the
other solutions “out there” – so that
they in turn can convince their CTOs?

NC: There are two things that make
this product truly unique. First,
unlike some of our larger competi-
tors, there is no need to retool the
development team with Enerjy de-
veloper tools. Most developers have a
carefully assembled set of tools from
a variety of vendors, many of which
may be open source. We say leave the
developer alone – let them continue
to use the same tools they are already
using. Second, Enerjy CQ2 is the only
product that uses patent-pending
technology to show development
managers their quality metrics per
developer. If a code quality tool tells
you that you have a problem with a
particular method, that may be use-
ful, but there is no real call to action.

Enerjy CQ2 will tell you how your
individual team members are doing,
and how they are trending over time.
Now, if you care about the quality of
your code base, that’s powerful stuff!

JDJ: Enerjy is, as you say, Massachu-
setts based; are you getting a sense,
from MA, of there being an overall
“return” of technology? Is technology
back in 2005, do you think?

NC: Yes, no doubt about it. But the
other thing we’re aware of is that
technology buyers are pickier than
ever before – you really need to show
a clear return on investment for your
solution. Any technology company
with a mediocre offering will not last
long in this market.

JDJ: Best of luck with Enerjy for the
remaining quarter of 2005 and, of
course, throughout 2006. We’ll try and
keep up with the speed of you guys! ;-)

NC: Thank you very much.

Q&A

Technology buyers are pickier than ever before –
you really need to show a clear return on investment

for your solution”
“

JDJ.SYS-CON.com36 November 2005

avaServer Faces (JSF) standardizes the server-side
component model for Web application develop-
ment but doesn’t standardize the presentation layer
at the browser. In a series of articles we are going to
look at how JSF can fulfi ll new presentation require-
ments without sacrifi cing application developer

productivity building Rich Internet Applications (RIA).

Consumer Requirements
 It’s always the end user who feels the effect of any
chosen technology, especially at the presentation layer.
The end-user experience should be top priority for any
developer building applications, whether they are Web
applications or desktop applications. End users demand
feature-rich and highly interactive user interfaces.

Introduction to Rich Internet Technologies
 Web application developers today are faced with
higher demand for richer functionality using technolo-
gies such as HTML, CSS, JavaScript, and DOM. These
technologies were not developed with enterprise ap-
plications in mind and, with increasing pressure from
consumers to provide applications with features not fully
described or supported by these technologies, develop-
ers are looking for alternative solutions or extensions to
these standards.
 From a combination of both consumer requirements
and developer needs, a new breed of Web technologies
has evolved. Often referred to as Rich Internet Technolo-
gies, these technologies enhance the traditionally static
content provided by Web applications.
 In the absence of suffi ciently powerful standards, new
technologies such as Mozilla’s XUL, Microsoft’s HTC, Java
applets, Flex, and OpenLaszlo have emerged to meet the
requirements. Such technologies support application-
specifi c extensions to traditional HTML markup while
still leveraging the benefi ts of deploying an application to
a central HTTP server. XMLHTTP has also returned under
a newly branded name, AJAX (Asynchronous JavaScript
and XML). Applications built with these technologies are
often referred to as Rich Internet Applications (RIA).
 In this article series we are going to focus on AJAX
and XUL to illustrate the potential that JSF brings to the
JavaEE developer.

AJAX
 AJAX has gained momentum primarily due to the XML-
HttpRequest browser object, which supports asynchro-
nous communication with any business services used by
the Web application. Popular sites such as Google Mail
and Google Suggest use AJAX to deliver RIA.
 With the XMLHttpRequest object, developers can now
send requests to the Web server to retrieve only the data
needed and use JavaScript to process the response.
This ability to reduce the amount of data transferred
between client and Web server reduces the bandwidth
to a minimum and saves processing time on the server
since most of the processing is done on the client using
JavaScript.
 It is important to note that the XMLHttpRequest ob-
ject, although widely used, could at best be called a “de
facto” standard, since most browsers, including Firefox,
Inter-net Explorer, Opera, and Safari, support it. It is
also worth noting that the XMLHttpRequest object is not
exclusive to AJAX; potentially the XMLHttpRequest object
can be used by any HTML/XML-based Web technology
such as XUL or HTC.

Desktop vs Web
 Traditional Web applications are in most cases slower
than their counterpart desktop applications. With AJAX
we can now send requests to the Web server to retrieve
only the data needed and use JavaScript to process the
response, which leads to a more responsive Web
application.
 A typical AJAX application leverages standard HTML/
XHTML at the presentation layer and uses JavaScript to
dynamically change the DOM. This creates an effect of
“richness” in the user interface with no dependency on
additional browser plug-ins.

Mozilla XUL
 XUL (pronounced zool) was created by the Mozilla
organization (Mozilla.org) as an open source project in
1998. With XUL, developers can build rich user interfaces
that may be deployed either as “thin client” Web applica-
tions, locally on a desktop, or as Internet-enabled “thick
client” desktop applications. To fully provide the con-
sumer with a rich user interfaces, XUL needs to execute

Jonas Jacobi is a principal

product manager and

evangelist for Oracle’s Java/

J2EE tool offering, JDeveloper,

and over the past three years

has been responsible for

JavaServer Faces, Oracle ADF

Faces, and Oracle ADF Faces

Rich Client development

features within Oracle

JDeveloper. Jonas has been

in the software business for

15 years. Prior to joining

Oracle, he worked at several

software companies in

Europe, covering many roles

including support, consulting,

development, and project

team leadership.

jonas.jacobi@oracle.com

by Jonas Jacobi and John Fallows

J

Feature

Providing the end user with a rich
 and responsive user interface

JDJ.SYS-CON.com38 November 2005

in the Mozilla Gecko Runtime Environment (GRE). There
are many examples of applications using XUL, including
the Firefox browser, the Thunderbird e-mail client, and
numerous plug-ins to each.

XUL Structure
 The base idea behind XUL is to provide a markup for
building user interfaces much like HTML, and to leverage
technologies such as CSS for look-and-feel and JavaScript
for events and behavior. There are even APIs available to
access files systems and Web services over the network. As
an XML language, XUL can be also be used in combina-
tion with other XML languages, such as XHTML and SVG.

XUL Components
 XUL comes with a base set of components that are avail-
able through the Mozilla GRE, and has the added
benefit of not needing to download components to display
an application in the browser. You can also design your
own components with XUL; these will need to be down-
loaded on request and cached in the browser.
 XUL uses a language called XBL (eXtensible Binding
Language) to define new components. XBL is also

used to bridge the gap between XUL and HTML,
making it easy to attach behavior to traditional HTML
markup.
 Listing 1 is a sample XUL file that embeds XUL elements
and standard, name-spaced HTML elements.
XUL Event Handling
 Using XUL event handling is not that different from using
HTML event handling. The GRE implementation supports
DOM Level 2 (and partially DOM Level 3) and is virtually
the same for HTML and XUL, and changes to the state and
events are propagated through a range of DOM calls. XUL el-
ements come with predefined event handlers, much like the
event handlers provided with the standard HTML elements
(see Listing 2).
 As in HTML, developers can use JavaScript functions
located in external libraries, or embedded in the page.

<script type=”text/javascript”src=”http://

www.bob.org/js/myscript.js”>

 There is a large set of built-in XUL components, each with
its own set of event handler attributes. For example, the XUL
window element delivers events such as load and paint.

Creating Custom XUL Components Using XBL
 XBL is an XML language that allows developers to extend
XUL by adding “custom” components to the extensive set of
existing XUL elements. In XUL, developers can define the
look and feel using CSS, and they can define the behavior
using XBL.
 Developers can look at XUL as the “implementation”
that comes with a pre-set of components, or tag libraries
that can be used to build a user interface, much like the
JSF Reference Implementation. XBL is the language devel-
opers use to extend XUL components and enable integra-
tion with HTML, in much the same way that Java is used to
extend JSF components.

XBL Structure
 An XBL file contains a set of bindings, each describing the
behavior, properties, and methods of an XUL component.
 A quick look at Listing 3 shows the root <bindings> ele-
ment containing two binding elements. A <bindings> ele-
ment can contain any number of <binding> elements.
The namespace in the <bindings> element defines which
syntax will be used, and in Listing 3 it is XBL – xmlns=http://
www.mozilla.org/xbl. The file also contains a combination
of XUL and HTML elements <xul:text/> and <html:input/>.
This is extremely useful for simplifying development by
encapsulating several components as a single, reusable com-
ponent. The xbl:inherits attribute allows the text element to
inherit values from the bound element by defining a variable
called name and assigns it to the value attribute. If no value
is defined when the component is used in a page, the text
field’s value will default to “Guest”.
 The ID attribute on the binding element (in Listing 3
“welcome” and “bye”) identifies the binding. Using CSS, a
developer can assign a binding to an element by setting the
–moz-binding URI property to reference the binding inside
the XBL document.

Feature

 Figure 1 A Page’s DOM tree without using XBL component

 Figure 2 A Page’s DOM tree with an XBL component. The nodes highlighted red are not visible in the source

39November 2005JDJ.SYS-CON.com

 Note: The way custom behavior can be attached to an
HTML element has been submitted as a proposal to the
W3C organization – “A Modular Way of Defining Behavior
for XML and HTML” (http://www.w3.org/TR/NOTE-AS) by
Netscape Communications Corp.

bob\:welcome

{

 -moz-binding: url(ʻbob-xbl.xml#welcomeʼ);

}

 In the above sample, the CSS selector for the bob:wel-
come element has the -moz-binding set to point to an XBL
file named bob-xbl.xml and refers to a specific binding with
ID welcome in the XBL file. This is similar to how anchors
are used in HTML files.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN” >

<html>

 <head>

 <link rel=”stylesheet” type=”text/css” href=”bob.css” >

 <title>Mozilla XBL Example</title>

 </head>

 <body>

 <div><bob:welcome name=”Bob” ></bob:welcome></div>

 </body>

</html>

 In the above HTML sample the bob.css stylesheet has
been attached to the HTML document, and there is one
element <bob:welcome name=”Bob”></bob:welcome> in-
serted in the page. One cool feature to using XBL’s encapsu-
lation of behavior is that it creates a document tree within
the scope of the custom component that is separate from
the main HTML page. This means that the XBL component
markup is not “exploded” into the main document, losing
encapsulation (see Figure 1).
 The direct benefits of encapsulation are full control over
both the behavior and the look-and-feel, but without ex-
posing any internal implementation details (see Figure 2).

Adding Functionality to an XBL Binding
 XBL can be used to add new fields, properties, and
methods to XUL elements. A field is a simple container that
can store a value that can be retrieved and set. A property is
slightly more complex and is used to validate values stored
in fields or values retrieved from XBL-defined element at-
tributes. Since the property cannot hold a value, there is no
way to set a value directly on a property without using the
onset or onget handlers. By using these handlers, a devel-
oper can perform precalculation or validation of the value
being retrieved or modified.
 Methods are object functions such as window.open();
and allow developers to add custom functions to custom
elements. In the XBL file, fields, properties, and methods are

John Fallows is a consulting

member of technical staff

for server technologies at

Oracle Corporation, and

has been working in

distributed systems for

over a decade. During the

past five years, he has

focused on designing,

developing, and evolving

Oracle ADF Faces, and is

now lead developer for

Oracle ADF Faces Rich Client.

john.fallows@gmail.com

JDJ.SYS-CON.com40 November 2005

Feature

defined inside an implementation element that is a child of the
binding element (see Listing 4). (Listings 4–7 and additional
source code can be downloaded from http://jdj.sys-con.com.)
 Developers can use the getElementById function to first
locate a custom element before accessing custom properties
and methods.
 In Listing 5, an HTML button has been added that triggers
the onclick event handler. The onclick event handler will
execute the assigned script – alert(document.getElementById(
‘welcome’).bob) – and display the value of the field called bob.

Handling Events in XBL
 In XBL, developers can add event handlers directly to the
individual XUL elements inside the content element, e.g., <xul:

button label=”Press me!” oncommand=”alert(‘welcome’)” />.
Sometimes it’s useful to add an event handler for all the child
elements of the content element. In XBL, this can be done by
adding a handler element. Each handler defines the action
that will be taken for a particular event triggered by any of its
content elements.

 In XBL sample shown in Listing 6, a button has been added
to the welcome binding and one handler has been added to
capture all click events in the scope of the welcome binding.

Why Would JSF Be of Any Help?
 Of the two technologies used in this article, only XUL is
designed to support reusable components in Web applica-
tions. XUL allows for the encapsulation of HTML, CSS, and
JavaScript into a single component that can be reused by the
application developer. AJAX, on the other hand, solves the
asynchronous communication to the server that can be used
to provide end users with a very responsive UI.
 These technologies solve most of the consumer require-
ments, but are still lacking in support for the application
developer. We need a standard way to define Rich Internet
Applications that are deployable over the Web without ven-
dor lock-in.
 The WHAT (Web Hypertext Application Technology) group
is working on a standard tag library for HTML extensions that
can work on any browser. Meanwhile, developers are falling
back to the lowest common denominator – HTML – and
using scripts to build dynamic Web applications, e.g., AJAX.
However, this approach of developing Web applications has
one severe drawback – there is no good reuse model or easy
integration with existing server-side logic.

 Figure 3 Rich Internet Component – InputDate

Listing 1

<?xml version=”1.0”?>
<?xml-stylesheet href=”chrome://global/skin/” type=”text/css”?>

<window id=”myWindow” title=”Bobʼs search”
 xmlns:html=”http://www.w3.w3.org/1999/xhtml”
 xmlns=”http://www.mozilla.org/keymaster/gatekeeper/there.
is.only.xul”>
<html:p>
 Search for:
 <html:input id=”find-text”/>
 <button id=”bobOK” label=”My Button”/>
</html:p>
</window>

Listing 2
<?xml version=”1.0”?>
<?xml-stylesheet href=”chrome://global/skin/” type=”text/css”?>

<window id=”myWindow” title=”Bobʼs search”
 xmlns:html=”http://www.w3.w3.org/1999/xhtml”
 xmlns=”http://www.mozilla.org/keymaster/gatekeeper/there.
is.only.xul”>
<html:p>
 Search for:
 <html:input id=”find-text”/>
 <button id=”bobOK” label=”My Button”
 oncommand=”alert(ʻThis is Bob\ʼs label: ʻ + event.tar-
get.label);
 return false;”/>
</html:p>
</window>

Listing 3

<?xml version=”1.0”?>

<bindings xmlns=”http://www.mozilla.org/xbl”

 xmlns:xbl=”http://www.mozilla.org/xbl”

 xmlns:html=”http://www.w3c.w3.org/xhtml/19991999/xhtml”

 xmlns:xul=”http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul”>

 <binding id=”welcome”>

 <content>

 <xul:text value=”Welcome to Writing JSF Components, “ />

 <xul:text value=”Guest” xbl:inherits=”value=name” />

 <xul:text value=”!” />

 <xul:textbox id=”your-name”

 value=”Guest”

 xbl:inherits=”value=name” />

 </content>

 </binding>

<binding id=”bye”>

 <content>

 <xul:text value=”Welcome back, “/>

 <xul:text value=”Guest” xbl:inherits=”value=name” />

 <xul:text value=”!” />

 <html:input type=”button” value=”Press me!” />

 </content>

 </binding>

</bindings>

41November 2005JDJ.SYS-CON.com

 JavaServer Faces defines a standard component model
to server-side Web application development. By integrat-
ing JavaServer Faces with XUL and AJAX, we can provide
a highly interactive Rich Internet Component suite that
also delivers a standard reuse model for Web application
developers.

Why a Component Model?
 Using components instead of markup is an effective
model that allows application developers to build Web ap-
plications with prefabricated blocks of functionality without
concern for implementation details. Over time, the com-
ponent author can maintain the internal implementation
without adversely impacting the application developer.

Cross-Platform Support
 Cross-platform support is critically important for today’s
technologies, never mind what tomorrow might bring. Con-
sumers are already requesting increased support for plat-
forms such as handheld devices, telnet clients, and instant
messaging.
 In most cases, applications need to be designed to use fea-
tures of a specific platform, which in turn is time-consuming
and costly. As each new platform is added, the time and cost
can increase significantly.
 For the two technologies previously mentioned in this ar-
ticle, one claims that it has cross platform support – Mozilla’s
XUL. This is partially true; you can deploy a XUL application
to any operating system that the Mozilla platform (GRE) sup-
ports.
 You could also argue that AJAX provides cross-platform
support, but it is the provider of the AJAX solution that needs
to ensure that every browser-specific quirk is supported.
 So, although you have plenty of environments to deploy to,
there is no true solution that has full cross-platform
support.

With Imagination as the Only Limit
 JSF standardizes the server side for the application de-
veloper now, while we wait for the presentation layer at the
browser to standardize for component developers.
 JSF separates the user interface from the application,
making it possible for the component author to change the
presentation layer without tampering with the application.
This is not solving the cross-platform issue or the extensibil-
ity of HTML, but it will help application developers build
Rich Internet Applications in an unswervingly standard way.
 A JSF component developer could take advantage of
XUL’s presentation layer and AJAX for communication, cre-
ating a highly interactive component. If the client does not
support XUL, the application can dynamically fall back to
a non-XUL solution. The application developer will still be
able to build one application supporting multiple render-
ing technologies with one common programming model
– JavaServer Faces.

A Page in JSF Supporting XUL and AJAX
 The JSF sample shown in Listing 7 illustrates what a page
developed with reusable JSF components leveraging XUL and
AJAX as rendering technologies can look like.

 Apart from the obvious namespaces, the sample contains one
namespace that maps to a custom component library – xmlns:
bobh=” http://www.bob.org/jsf/html” – and a custom compo-
nent – <bobh:inputDate ...”/>.
 The source of the page is not that different from what we have
seen so far with XUL or AJAX, but the main difference is that the
Web application developer will not need to learn two ways of
supporting Rich Internet Applications in today’s browsers.

Summary
 This article provides some insight into two of the market’s
leading view technologies for Rich Internet Applications (RIA)
– XUL and AJAX. These technologies have proven that they are
more than capable of providing the end user with a highly rich
and responsive user interface. We have also touched on the
issues with these technologies such as platform support, being
non-standards based, and maintenance.
 Looking ahead, the potential for JavaServer Faces as a UI
component technology is without boundaries. Component
developers can provide the community with a wide range of
components supporting technologies from HTML to XUL, wire-
less, and even character-based solutions with the imagination
as the only limit.
 In future articles, we are going to discuss how to build reus-
able JSF components that leverage AJAX and XUL.
This article is based on, and contains excerpts from, the book Pro JSF: Building Rich Internet
Components by Jonas Jacobi and John Fallows, to be published by Apress in January 2006.

eport writing creates an
expensive bottleneck for
many companies because it
demands ongoing, iterative

involvement from in-house develop-
ers. This article describes a novel
approach to report writing which al-
lows business users to layout elegant
reports using Microsoft Word® as the
layout tool.

Introduction
 Report writing is costly and time
consuming. The people who need
the reports – business users – gener-
ally can’t create them without the
help of a programmer or devel-
oper. Creating reports becomes an
iterative process. The business user
enlists the developer’s help. The
developer creates a report and
shows it to the business user. With
feedback from the user, the devel-
oper then refines the report. This
process happens for reports across
the organization.
 IT and business resources get tied
up in this time-consuming process.
Plus, report writing is often the low-
est priority for developers because
they are under pressure to deliver
revenue-generating products.
 This endless report design process
is very slow, expensive and frustrat-
ing for all departments involved.
Worse still, the final report created
is inadequate -- getting it right
becomes too expensive and takes too
much time.
 What if report design were easy
enough that program managers,
product managers, accounting
managers or any business user
could do it alone, without help?
What if there were no ad hoc query
tools or complex report writers
that require programming knowl-
edge? What if there was no learning
curve?

Simplified Report Writing
 Microsoft Word (or any other word
processor) is the key to a new and
innovative approach to report writing
called Windward Reports™. Microsoft
Word is a powerful layout tool that
almost everyone knows how to use.
Setting up tables and formatting text in
Word is almost second nature to most
business people. Leveraging the famil-
iar Word environment, business users
have an easy-to-use tool to create the
sophisticated reports they really want.
 Business users can take full
advantage of Word’s formatting and
What-You-See-Is-What-You-Get envi-
ronment. There’s little or no learning
curve.

 Everything you would do to create
a similar report template you already
know how to do.

 Windward Reports is an enterprise-
level reporting engine that uses Micro-
soft Word, or any other word processor
such as Open Office, to design a report
template. Windward Reports takes the
template you design and any number
of data sources (such as xml or sql
databases) and merges them together
to create your final report.

Using Windward Reports
 Windward Reports can be called by
java or .NET programs, either directly
or in a client server configuration.

Advertorial

by Windward Studios, Inc.

Report Writing Simplified

R

Take advantage of MS Word’s® powerful layout tools
to build complex reports

 Figure 1 Purchase Order Template

PAID SUBMISSION BY WINDWARD STUDIOS, INC.

 Windward Reports includes Auto-
Tag™, an add-in for Microsoft Word
which greatly simplifies data layout
and data source mapping, eliminat-
ing the expense and frustration of the
iterative report development process.
Because the report is designed in
Word, business users can design it
correctly and quickly. Figure 1 shows
a Purchase Order Template that was
created in Word.
 Tags are added to the template to
indicate where data will be merged
into the template to create the final
report. The simplest tag is the out
tag, whose format is <wr:out select=’/
root/name’/>. In this case, the tag
will be replaced with the name of the
customer from the xml data merged
with the template. While the entire tag
can appear in the template, AutoTag
displays just the tag name. Placing the
cursor over the tag name pops up a
tooltip that displays the entire tag.

 In addition, when using AutoTag,
there is no mistyping of tags in the
template. A user selects “Insert Tag”
from the drop-down menu and a pop-
up box displays the available tags. A
business user can’t get the tag format
wrong (see Figure 2).

 The Tag Editor makes it easy for a
non developer to:
• See the data nodes and select the

one you want, easily setting the tag
to point to the correct data. There
is no need to understand how to
access a database.

• Displays the data that the tag will
return. This uses a sample data-
set and delivers immediate visual
feedback of the data that will be
inserted.

 While there are 9 tags, most work is
performed with two tags: the out tag
(described above), and the forEach

tag. The forEach tag will loop through
a set of data, once for each row of
data. In the screenshot above, the
forEach will loop through 4 times,
once for each item in the invoice. In
the template displayed in Figure 3,
it will create one row in the table for
each of the 4 items purchased.
 Once the template is complete and
the desired report output format is
chosen (PDF, RTF, HTML, WordML,
XLS, SpreadsheetML, TXT, or multi-
part MIME email), Windward Reports
merges the template with the cor-
responding report data. The result is a
finished report with all the formatting
and positioning specified by the busi-
ness user - available in minutes.

Proven Efficiency
 Windward Reports’ customers at-
test to this ease of use and time
savings:
 Mr. S.S. Mohanty of Nucleus Soft-
ware Exports, says his favorite feature
of Windward Reports is the Word
based template because it made his
life easier. Prior to using Windward
Reports, he said “I [previously] spent
half my time designing and scripting
reports to meet the Bank’s require-
ments. With Windward, we can layout
a report in Word and get immediate
approval from the client.”
 Mr. Bjerregaard Pedersen of Back-
bone Digital Systems said “compared
to systems where both layout and data
must be coded, as we did before, the
process of creating a new report is at
least 5 times faster.”

More Information
 This article is brought to you by
Windward Reports, a robust J2EE/.
NET reporting engine that uses Mi-
crosoft Word as a layout tool, putting
report-design and generation power
in the hands of the business user,
technical or non-technical. Wind-
ward Reports can run as a standalone
application or as an enterprise-wide
service running on a corporate server.
To see if Windward Reports is right for
your organization, download a free
demo at http://www.windwardre-
ports.com or call 303-499-2544.

 Figure 2 Tag Editor

PAID SUBMISSION BY WINDWARD STUDIOS, INC.

JDJ.SYS-CON.com44 November 2005

hile creational patterns decouple a client
from the objects it instantiates, behavioral
patterns dictate the object interaction. If not
carefully planned, coupling and cohesion
can pose major design issues. My previous

article, “Java GoF Creational Design Patterns” (JDJ, Vol. 9, is-
sue 9), discussed creational patterns. This article will focus on
behavioral patterns.
 Knowledge of the behavioral pattern vocabulary will help
designers come up with appropriate solutions for object in-
teractions, minimizing or eliminating these issues. One basic
thing to understand is that there are two kinds of patterns:
• Class: Describes compile-time relationship between

classes via inheritance
• Object: Describes the runtime relationship between

classes via composition

 The patterns elicited in this article have been classifi ed as
either object or class based. Generally, object patterns allow
more fl exibility in design.
 When working with design patterns, it’s important to know
not just how but also when to use them. A design pattern
should occur naturally as a part of a design and shouldn’t
drive the design, but guide it. Overuse of any pattern is harm-
ful, especially in a situation where you’re biased, desper-
ately trying to fi t a pattern into the design. If you look at the
Golden Hammer anti-pattern (an anti-pattern is the reverse
of a design pattern), it states just that: when you are already
well versed with a particular pattern, and overuse a technol-
ogy or pattern, then learn or implement a more befi tting
technology/pattern to the domain/problem in question. It is
prudent to look at the domain and problem context fi rst and
then use patterns to help in the design process.
 At a bare minimum, you should strive for a loosely coupled
design and program to an interface rather than an implemen-
tation. This leads to a good design without forcing you to ap-
ply design patterns in a problem context. Patterns are meant
to aid designers, not compel the designers to use them.
 It’s also not a good idea to override an implemented
method of a base class or derive from a concrete class. If you
also adhere to not having a variable holding a reference to
a concrete class, together this qualifi es the dependency (or
inversion) principal that can also be used as a guideline for
design.

 In accordance with my earlier article on creational pat-
terns, I’ll attempt to keep this one terse as well, simultane-
ously keeping ease of understanding as the denominator.
 Table 1 lists the behavioral patterns with their intent.
Our next step will be to validate each one with a laconic,
yet usable template. Each pattern will have a standard
defi nition, template, and description attached to it. I will
then attach a real-world example in which the respective
pattern shall be applicable. Together, these elements will
help you understand the patterns from the perspective of
a software manager, architect, designer, or developer.

Strategy Pattern
 This pattern defi nes a family of algorithms, encapsu-
lates each one, and makes them interchangeable. It
allows algorithms to vary independently of the clients
that use it.
 The Strategy pattern is widely used and suggests pro-
gramming to an interface over implementation. It allows
building dynamic software that can be changed with
minimal impact on existing code.
 Let’s look at the template below:
1. The first step is to define an interface Strategy.

This defines a method that each ConcreteStrategy
shall implement (there can be more than one
ConcreteStrategy).

2. The Context class encapsulates the Strategy interface.
3. Now this is ready to be used. A client can cre-

ate a Context object and dynamically assign the
ConcreteStrategy at runtime.

Puneet Sangal is a

Technical Architect for a

software services company.

He has been working

with Java technology for

seven years.

pmsangal@gmail.com

by Puneet Sangal

W

Solutions for object interactions

Feature

Table 1 The GoF Behavioral Design Patterns

Be
ha

vi
or

al
 D

es
ig

n
Pa

tte
rn

s Behavioral Pattern Class-based or Object- based
Strategy Object
Visitor Object
Template Class
Iterator Object
Command Object
Memento Object
Interpreter Class
Observer Object
Chain of Responsibility Object
State Object
Mediator Object

 Java GoF Behavioral
 Design Patterns

45November 2005JDJ.SYS-CON.com

 Strategy is an object pattern. If this solution were to be ap-
proached via inheritance (as in a class pattern), it would not
allow the fl exibility to dynamically bind ConcreteStrategy to
Context.

 Example

 Imagine a scenario in which a company is interviewing
 for different positions. The recruiter wants to schedule
 the interviews with the fl exibility to change the position
 that a candidate might interview for. To apply the above
 template:

 Strategy = Position

 Context = Candidate

 ConcreteStrategy1 = DotNET

 ConcreteStrategy2 = J2EE

 ConcreteStrategy3 = CPlusPlus

Mediator Pattern
 The Mediator pattern defi nes an object that encapsulates
how objects interact. It promotes loose coupling by keeping
objects from referring to each other explicitly, and it lets you
vary their interaction independently. This centralizes the logic
and decouples the objects supported by the Mediator from
the rest of the classes. To reduce the coupling, the Mediator
class provides detailed information about the methods of
other classes.
 Beware while using this pattern because if not used prop-
erly, it can make the system quite complicated and, as a result,
hard to maintain.
 A Mediator acts akin to the Observer pattern. It observes
the changes in the Colleague classes.

Template

package strategy;

public interface Strategy {

 /**
 * This method declaration must be implemented by the
ConcreteStrategy implementations.
 */
 public void algorithmInterface();
}

package strategy;

public class Context {

 /** stores the Strategy instance of the Context */
 private final Strategy fStrategy;

 /**
 * Constructor
 */
 public Context(Strategy strategy) {
 super();
 fStrategy = strategy;
 }

 /**
 * This method invokes the algorithm interface of the current
Strategy
 */
 public void contextInterface() {
 fStrategy.algorithmInterface();
 }
}

package strategy;

public class ConcreteStrategy implements Strategy {

 public ConcreteStrategy() {
 super();
 }

 /**
 * This method implements the algorithm operation defined by
the Strategy interface.
 */
 public void algorithmInterface() {
 // Write your algorithm code here ...
 }

}

Template

 package mediator;

public interface Mediator {

 /**
 * This method creates all colleagues instances.
 */
 public void createColleagues();

 /**
 * Each associated colleague have to call this method if its
properties of

-continued on page 46

 Java GoF Behavioral
 Design Patterns

JDJ.SYS-CON.com46 November 2005

 Think of an e-mail system. In order for any person
 to e-mail anyone else in the e-mail system, every person
 doesn’t need to store everyone else’s e-mail IDs. Rather,
 an LDAP directory can act as the mediator and provide
 information about the e-mail addresses to any person
 to e-mail any other person. If any person leaves the
 company or the e-mail ID changes, the LDAP directory
 can easily synchronize it.

 Another example: the control tower at a controlled airport
 demonstrates this pattern well. The pilots requesting to land
 or depart communicate with the tower, rather than explicitly
 communicating with one another. The tower is the media-
 tor here, imposing any constraints in the airport and not
 controlling a particular flight or pilot.

Visitor Pattern
 This pattern comes in handy when you have a number
of classes implementing different interfaces. Visitor lets you
define a new operation without changing the classes of the el-
ements on which it operates. In addition, if an operation needs
to be performed on these classes, Visitors can be used.
 Visitor is one of the complex patterns and needs to be de-
signed carefully. Although Visitor is an object pattern, it should
be used when encapsulation is not deemed more important
and you want to add capabilities to a composite of objects.

Feature

 -continued from page 45

* interest are changed.
 */
 public void colleagueChanged(Colleague colleague);

}

package mediator;

 /** stores the associated Mediator */
 private final Mediator fMediator;

 /**
 * Constructor
 */
 public Colleague(Mediator mediator) {
 super();
 fMediator = mediator;
 }

 /**
 * Call this method from derived classes if a property of interest
has been changed.
 */
 protected void changed() {
 fMediator.colleagueChanged(this);
 }

}

package mediator;

public class ConcreteColleague extends Colleague {

 /**
 * Constructor
 */
 public ConcreteColleague(Mediator mediator) {
 // call inherited constructor
 super(mediator);
 }

}

package mediator;

public class ConcreteMediator implements Mediator {

 /**
 * This method creates all colleagues instances.
 */
 public void createColleagues() {
 }

 /**
 * Each associated colleague have to call this method if its prop-
erties of
 * interest are changed.
 */
 public void colleagueChanged(Colleague colleague) {
 // Inform all other colleagues that one colleague has changed.
 }
}

Example

public interface Visitee {
 public void acceptVisitor(Visitor v);
 }

public abstract class Visitor {
 public void VisitObjects(Enumeration visitedItems) {
 while (visitedItems.hasMoreElements()) {
 // The visitor object asks the visitee to accept this
visitor
 Visitee obj = (Visitee) visitedItems.nextElement();
 obj.acceptVisitor(this);
 }
 }

 public abstract void visitTypeA(Visitee obj);
 public abstract void visitTypeB(Visitee obj);
 public abstract void visitTypeC(Visitee obj);
 // ... and so on, for each type of object to visit
 }

// Now some concrete visitor classes for various operations to
 // perform on the structure, e.g., “Print”, “Display”,
“Compute”,
 // “Save”, “Clear” ...

 public class ConcreteVisitorA extends Visitor {
 public void VisitTypeA(Visitee obj) {
 // ... do what needs to be done for a TypeA object
 // for this type of visit-operation
 obj.doSomething();
 }
 public void VisitTypeB(Visitee obj) {
 // ... do what needs to be done for a TypeA object
 // for this type of visit-operation
 obj.doSomethingElse();
 }
 // ... and so on, for each type of object to visit
 }

public class ConcreteVisitorB extends Visitor {
 // ... same stuff as above, but for a different operation,
 // e.g., “Print”, “Display”, “Compute”, “Save”
 }

// Now for the types of objects in the structure that we need to
visit

 public class TypeA implements Visitee {
 public void acceptVisitor(Visitor v) {
 v.VisitTypeA(this);
 }

Template

47November 2005JDJ.SYS-CON.com

Example

 This pattern can be observed in the operation of a cab service.
 When a customer (Visitor) needs a cab, he or she calls for a
 cab. The cab company adds this customer to its existing list and
 dispatches the taxi. From then on, the driver is in control of the
 transportation and not the customer. The customer can only
 dictate where he or she wants to be transported to.

Template Pattern
 In this pattern, the subclasses decide how to implement steps
of an algorithm. Once a skeleton of an algorithm is defined in the
form of steps, it might be useful to defer some of these steps to the
subclasses. The subclasses can provide their own implementation
of these steps. For the client, it is still the same method call but,
based on the subclass object created, the steps for that subclass are
invoked, without changing the algorithm structure.
 A template is provided below. When working with a template
pattern, sometimes it’s better to keep the abstract methods small in
number, otherwise it might be a big job to implement them in the
subclass.

 Imagine database-driven application where you have to write
 different select queries. If there is a QuerySelect abstract class,
 it can define an execute() method. This execute method has some
 common steps and one step called executeSelect() that needs
 to be implemented by each subclass of the QuerySelect class.
 The executeSelect() is also defined as an abstract method inside
 the QuerySelect class.

 // ...
 }

 public class TypeB implements Visitee {
 public void acceptVisitor(Visitor v) {
 v.VisitTypeB(this);
 }
 // ...
 }

Example

package template;

public abstract class AbstractClass {

 /**
 * Default constuctor
 */
 public AbstractClass() {
 super();
 }

 /**
 * This method defines a skeleton of an algorithm, delegating some
steps
 * to primitive operations to its subclass implementation.
 */
 public void templateMethod() {
 // Customize this method based on your application needs.
 primitiveOperation1();
 primitiveOperation2();
 }

 /**
 * A ConcreteClass must implement this abstract method. It is used
 * by the templateMethod to proceed the algorithm.
 */
 protected abstract void primitiveOperation1();

 /**
 * A ConcreteClass must implement this abstract method. It is used
 * by the templateMethod to proceed the algorithm.
 */
 protected abstract void primitiveOperation2();

}

Template

package template;

public class ConcreteClass extends AbstractClass {

 /**
 * Default constuctor
 */
 public ConcreteClass() {
 super();
 }

 protected void primitiveOperation1() {
 // Implement this primitive operation to perform a step in the algo-
rithm defined in the AbstractClass.
 }

 protected void primitiveOperation2() {
 // Implement this primitive operation to perform a step in the algo-
rithm defined in the AbstractClass.
 }

}

 -continued on page 48

JDJ.SYS-CON.com48 November 2005

 To write a select query, extend the QuerySelect class and
 implement the executeSelect() method. When the client
 needs to execute this query, all it has to do is:

 QuerySelect querySelect = new SampleQuerySelect();

 querySelect.execute();

 where SampleQuerySelect extends the QuerySelect
 class. Refer to the above template to visualize how these
 classes fit in.

Iterator Pattern
 Iterator provides a common interface for traversing an
aggregation of objects, without exposing the implementation.
This addresses the need to abstract the traversal of different
data structures transparently.
 The Iterator takes the responsibility of traversal and not
the aggregate. This simplifies the aggregate interface and its
implementation, as seen below in the template.

Feature

 -continued from page 47

package iterator;

public interface Iterator {

 /**
 * Moves the item pointer to the first item in the collection
 */
 public void first();

 /**
 * Moves the item pointer to the next item in the collection
 */
 public void next();

 /**
 * This method returns false if are still items in the collection
to
 * iterate through, otherwise true.
 */
 public boolean isDone();

 /**
 * This method returns the item at current position.
 */
 public Object currentItem();
}

package iterator;

public interface Aggregate {

 /**
 * This method creates and returns a ConcreteAggregate instance.
 */
 public Iterator createIterator();

 /**
 * This method returns the count of items.
 */
 public int count();

 /**
 * This method appends a new item to the collection of items.
 */
 public void append(Object item);

 /**
 * This method removes an item from the collection of items.
 */
 public void remove(Object item);
}

package iterator;

public class ConcreteIterator implements Iterator {

Template

 /** This field stores the reference to the ConcreteAggregate
instance. */
 private final ConcreteAggregate fListAggregate;

 /** This field stores the current item index. */
 private int fIndex = 0;

 /**
 * Constructor
 */
 public ConcreteIterator(ConcreteAggregate aggregate) {
 super();
 fListAggregate = aggregate;
 }

 /**
 * Moves the item pointer to the first item in the collection
 */
 public void first() {
 fIndex = 0;
 }

 /**
 * Moves the item pointer to the next item in the collection
 */
 public void next() {
 fIndex++;
 }

 /**
 * This method returns false if are still items in the collection
to
 * iterate through, otherwise true.
 */
 public boolean isDone() {
 return fIndex == fListAggregate.count();
 }

 /**
 * This method returns the item at current position.
 */
 public Object currentItem() {
 return fListAggregate.getList().get(fIndex);
 }
}

package iterator;

import java.util.ArrayList;
import java.util.List;

public class ConcreteAggregate implements Aggregate {

 /** This list stores references to all item instances. */
 private ArrayList fItemList = new ArrayList();

 /**
 * This method creates and returns a ConcreteAggregate instance.
 */
 public Iterator createIterator() {
 return new ConcreteIterator(this);
 }

 /**
 * This method returns the count of items.
 */
 public int count() {
 return fItemList.size();
 }

 /**
 * This method appends a new item to the collection of items.
 */
 public void append(Object item) {
 fItemList.add(item);
 }

 /**
 * This method removes an item from the collection of items.
 */
 public void remove(Object item) {
 fItemList.remove(item);
 }

 /**
 * This method returns the internal collection implementation.
 */
 public List getList() {
 return fItemList;
 }

}

49November 2005JDJ.SYS-CON.com

 This is a very common pattern and is also provided in
 the standard Java API. The template provided can be
 used as is or customized per your needs. Some of the
 standard collection classes may use the Factory Method
 pattern to determine what kind of Iterator to instantiate.

Command Pattern
 When using the Command pattern, an object encapsulates
a request to execute a method in another object, giving the
client the ability to make requests without knowing anything
about the actual action that will be performed. The Command
pattern also allows changing that action without requiring any
modification in the client.
 Basically, a Command object encapsulates a request (set
of actions) on a set of receivers. To achieve this, it packages
actions and the receiver into an object that exposes just one
method, execute(). When called, execute() causes the actions
to be invoked on the receiver.
 This pattern is commonly used for operations like logging
and undoing.

Example

package command;

public interface Command {

 /**
 * This abstract method must be implemented by the ConcreteCommand
implementation.
 */
 public void execute();

}
package command;

public class Receiver {

 /**
 * This construtor creates a Receiver instance.
 */
 public Receiver() {
 super();
 }

 /**
 * This method performs an action.
 */
 public void action() {
 // Write your action code here ...
 }
}

package command;

public class ConcreteCommand implements Command {

 /** stores the Receiver instance of the ConcreteCommand */
 private final Receiver fReceiver;

 /**
 * Constructor
 */
 public ConcreteCommand(Receiver receiver) {
 super();
 fReceiver = receiver;
 }

 /**
 * This method executes the command by invoking the corresponding
 * method of the Receiver instance.
 */
 public void execute() {
 fReceiver.action();
 }

Template

}

package command;

public class Invoker {

 /** stores the Command instance of the Invoker */
 private Command fCommand;

 /**
 * Default constructor
 */
 public Invoker() {
 super();
 }

 /**
 * Constructor
 */
 public Invoker(Command cmd) {
 super();
 fCommand = cmd;
 }

 /**
 * This method stores a ConcreteCommand instance.
 */
 public void storeCommand(Command cmd) {
 fCommand = cmd;
 }

 /**
 * This method performs the actions associated with the
ConcreteCommand
 * instance.
 */
 public void execute() {
 fCommand.execute();
 }
}

 -continued on page 50

JDJ.SYS-CON.com50 November 2005

 A customer (Client) walks into a restaurant, looks at
 the menu, and places an order (Command) with the
 waiter (Invoker). Now the cook (Receiver) picks up the
 order and prepares the dishes. You may use the template
 provided as a reference to start with this pattern.

 Also, continuing with our previous example in the Tem-
 plate pattern, let’s define a base Query class. This has
 three subclasses called SelectQuery, InsertQuery, and
 UpdateQuery. Each of these can also be treated as
 commands.

Memento Pattern
 Memento allows an object to store the state of another ob-
ject, restoring the object’s internal state at a later point. Video
games frequently implement this pattern.
 This essentially implies creating a snapshot, as in a relation-
al database. At a later time, when the originator needs to recall
a previous state, it asks the caretaker to return the previously
stored memento.
 A drawback to using this pattern is that saving and restoring
state can be time-consuming.

Feature

package command;

public class Client {

 /** stores the Receiver instance of the Client */
 private final Receiver fReceiver;

 /**
 * This construtor creates a Client instance and stores the given
Receiver.
 */
 public Client(Receiver receiver) {
 super();
 fReceiver = receiver;
 }

 /**
 * This method creates a ConcreteCommand instance and specifies a
Receiver object.
 */
 public void initConcreteCommand() {
 ConcreteCommand cmd = new ConcreteCommand(fReceiver);
 Invoker invoker = new Invoker();
 invoker.storeCommand(cmd);
 }

}

 -continued from page 49

Example

package memento;

public interface State {
}

package memento;

public class Memento {

 /** stores the State instance of the Memento */
 private State fState;

 /**
 * Default constructor
 */
 public Memento() {
 super();

Template

 }

 /**
 * Constructor
 */
 public Memento(State state) {
 super();
 fState = state;
 }

 /**
 * This method stores a State instance.
 */
 public void setState(State state) {
 fState = state;
 }

 /**
 * This method returns the associated State instance.
 */
 public State getState() {
 return fState;
 }
}

package memento;

public class Originator {

 /** stores the internal state of the Originator */
 private State fState;

 /**
 * Default constructor
 */
 public Originator() {
 super();
 }

 /**
 * Constructor
 */
 public Originator(State state) {
 super();
 fState = state;
 }

 /**
 * This method creates and returns a Memento object containing a
snapshot
 * of the Originator instanceʼs state.
 */
 public Memento createMemento() {
 return new Memento(fState);
 }

 /**
 * This method passes back a Memento object to an Originator
instance. The
 * Memento object must be used to restore an earlier Originator
state.
 */
 public void setMemento(Memento memento) {
 fState = memento.getState();
 }
}

package memento;

import java.util.Stack;

public class Caretaker {

 /** Stores a list of history states. */
 private final Stack fHistoryStack = new Stack();

 /** Stores the associated Originator instance. */
 private final Originator fOriginator;

 /**
 * Default constructor
 */
 public Caretaker(Originator originator) {
 super();
 fOriginator = originator;
 }

 /**
 * This method backups the current Originator state and stores it
in a
 * history stack. This snapshot can be used to restore the current
state

51November 2005JDJ.SYS-CON.com

Example

 The serialization process in Java exemplifies the idea that
 is exhibited in this pattern. Serializable interface can store
 as well as restore the state of an object through the process
 of serialization and de-serialization.

Interpreter Pattern
 Given a language, Interpreter defines a representation for its
grammar, along with the facility to interpret sentences in the
language.
 The Interpreter pattern can be visualized in the following steps:
• Define a domain language (i.e., problem characterization) as

simple language grammar
• Represent domain rules as language sentences
• Interpret these sentences to solve the problem

 A class is used to represent each grammar rule. Since grammars
are usually hierarchical in structure and owing to the class pattern
nature of Interpreter, the inheritance hierarchy of rule classes
maps fits aptly.
 In the template shown below, an abstract base class specifies
the method interpret(). Each concrete subclass implements inter-
pret() by accepting the current state of the language stream and
adding its contribution to the problem-solving process.

 It’s outside the scope of this article to come up with a usable
template for Interpreter. The above template should only be used
as a reference.
 Interpreter is a combination of grammatical expressions,
sequences, commands, repetitions, and variables. Although the
Interpreter provides the ability to extend the grammar, it is only
wise to use when the grammar in question is relatively simple,
otherwise Interpreter can become complex to maintain.

 The Interpreter pattern is particularly useful in scripting
 languages. Rhino (used in JavaScript) and Jelly (used in
 Maven) provide for scripting needs outside of Java.

Observer Pattern
 Publisher + Subscriber = Observer Pattern. You already know
this pattern, if you subscribe to and read newspapers.
 Observer notifies objects in the event of a state change. It
defines a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified and
updated automatically.
 The subject is the keeper of the business rules. The “view”
functionality is delegated to distinct Observer objects. Observers
register themselves with the Subject and when a Subject changes,
it broadcasts to all registered Observers that it has changed. An Ob-
server can then query the Subject for the change that has occurred.

 * later.
 */
 public void backupState() {
 fHistoryStack.push(fOriginator.createMemento());
 }

 /**
 * This method restores a previous Originator state.
 */
 public boolean restoreState() {
 // check whether snapshots available
 if (!fHistoryStack.empty()) {
 Memento memento = (Memento) fHistoryStack.pop();
 fOriginator.setMemento(memento);
 return true;
 } else {
 return false;
 } // if - else
 }

}

Example

package interpreter;

public interface AbstractRule {

 public void interpret(Context context) {
 }

}
package interpreter;

public class Terminal Implements AbstractRule {

 public void interpret(Context context) {
 }

}
package interpreter;

public class CompositeRule Implements AbstractRule {

 public void interpret(Context context) {
 }

}

Template

JDJ.SYS-CON.com52 November 2005

 The Observer pattern provides the flexibility to con-
figure the number and type of “view” objects to be configured
dynamically, instead of being statically specified at compile-time.
 The difference between Mediator and Observer is that the
latter distributes communication by introducing “observer” and
“subject” objects, whereas a Mediator object encapsulates the
communication between other objects.

 Auctions demonstrate this pattern. The auctioneer starts
 the bidding, and “observes” when a bidder accepts the
 bid. The acceptance of the bid changes the bid price that
 is broadcast to all of the bidders in the form of a new bid.

State Pattern
 The State pattern encapsulates state-based behaviors and
uses delegation to switch between behaviors. In this pattern,
an object appears to change its class; however, note that this
pattern isn’t the same as the state of a finite-state machine. This
refers to the state of a particular object, which can be thought
of as the set of values of all its member variables at a particular
time. Thus the intent is not to emulate FSM, but to allow an
object to appear to alter its behavior-type at runtime.
 State might seem similar to the Strategy pattern. But with the
State pattern, we have a set of behaviors encapsulated in state
objects; at any time the context is delegating to one of these
states. The client knows very little, if anything, about the state
objects. With Strategy, the client usually specifies the strategy
object that the context is composed of. In general, Strategy is a
flexible alternative to subclassing, whereas State is an alternative
to putting lots of conditionals in your context. Classes that have
several switch or if-else statements introduce maintenance issues.
The State pattern modifies this spaghetti to an elegant pattern. By
encapsulating the behaviors within state objects, you can simply
change the state object in context to change its behavior.

Feature

package observer;

public interface Observer {

 /**
 * This method requests the Observer object to update itself to
 * reconcile its state with that of the Subject object.
 */
 public void update();

}
package observer;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

public class Subject {

 /** This list stores references to all Observer instances. */
 private List fObserverList = new ArrayList();

 /**
 * This method attaches an Observer instance to the Subject
instance.
 */
 public void attach(Observer observer) {
 fObserverList.add(observer);
 }

 /**
 * This method detaches an Observer instance from the Subject
instance.
 */
 public void detach(Observer observer) {
 fObserverList.remove(observer);
 }

 /**
 * This method notifies the Subject instances that a change has
been observed.
 */
 public void toNotify() {

 Iterator it = fObserverList.iterator();

 // for each registered observer call the ʻupdateʼ-method
 while (it.hasNext()) {
 ((Observer) it.next()).update();
 } // while

 }
}

package observer;

public interface State {
}

package observer;

public class ConcreteSubject extends Subject {

 /** stores the state of the ConcreteSubject */
 private State fSubjectState;

 /**
 * This method returns the state of the ConcreteSubject instance.
 */
 public State getState() {
 return fSubjectState;
 }

 /**
 * This method sets the state of the ConcreteSubject instance.
 */
 public void setState(State state) {
 fSubjectState = state;
 }
}

Template

package observer;

public class ConcreteObserver implements Observer {

 /** stores the state of the ConcreteObserver */
 private State fObserverState;

 /** stores the associated ConcreteSubject */
 private final ConcreteSubject fConcreteSubject;

 /**
 * Constructor
 */
 public ConcreteObserver(ConcreteSubject subject) {
 super();
 fConcreteSubject = subject;
 // copy initial state
 fObserverState = fConcreteSubject.getState();
 }

 /**
 * This method updates the ConcreteObserverʼs state to be
consistent
 * with the ConcreteSubjectʼs state.
 */
 public void update() {
 // Customize this method based on your application needs.
 fObserverState = fConcreteSubject.getState();
 }

}

Example

package state;

public class Context {

 /** stores the associated State instance */
 private State fState;

 /**
 * Constructor
 */
 public Context(State state) {
 super();

Template

53November 2005JDJ.SYS-CON.com

 Vending machines have states based on the inventory
 of items available at any point, the money deposited (in
 turn the ability to make change), the item selected,
 selecting a different item, start all over, etc. The machine
 will deliver an item only when the requisite amount has
 been deposited. The vending machine will then deliver a
 product and no change, or deliver a product and change,
 or deliver no product due to lack of inventory.

Chain of Responsibility Pattern
 This pattern allows several objects in a chain to handle a
request. The objects that handle the request are called receiv-
ers, thus the coupling between the sender and receiver can be
avoided. No one receiver needs to know about any other receiver
as well. The request is passed along the receivers until one of
them can handle it.
 This is useful when you want to issue a request to one of
several objects without specifying a particular object explicitly,
or if you want the ability to modify objects dynamically that can
handle requests.

 Filters, a very commonly used servlet, are an example of a chain-
 ing pattern. A request passes through a set of filters until a condi-
 tion is satisfied. Filters are configurable via the Web configuration
 XML file. It’s particularly useful in security, logging, and validation.

 The template shown above assumes two handlers. Since there
 can be any number of handlers, you may customize the template
 according to your needs.

 A classic example of this pattern is the inheritance mechanism.
 When executing a method in a multiple-level derived class, the
 method in the first parent class of this inheritance chain is executed.

Summary
 I’ve discussed eleven behavioral design patterns here. If you are
interested in learning more about patterns, I would recommend
reading one of the many books available about design patterns.

References
• Java GoF Patterns: http://www.fluffycat.com/java/patterns.html
• Cooper, J. (1998). The Design Patterns Java Companion. IBM

Thomas J. Watson Research Center: http://www.patterndepot.
com/put/8/JavaPatterns.htm

• Sangal, P. (2004). “Java GoF Creational Design Patterns.” JDJ, Vol.
9, issue 9: http://java.sys-con.com/read/46239.htm

• Freeman, E.; Freeman, E.; Bates, B.; and Sierra, K. (2004). Head
First Design Patterns. O’Reilly.

• Sangal, P. (2005). “An Introduction to Antipatterns in Java
Applications”: http://www.devx.com/Java/Article/29162

Example

package chainofresponsibility;

public abstract class Handler {

 /** each object in the chain acts as a handler and has a successor. */
 private Handler successor;

 /**
 * handle the request
 */
 public abstract void handleRequest() {
 }

}
package chainofresponsibility;

public class ConcreteHandler1 {

 /** inherited */
 private Handler successor;

 /**
 * if the request can be handled, it is; else it is forwarded to its
successor
 */
 public abstract void handleRequest() {
 }

}
package chainofresponsibility;

public class ConcreteHandler2 {

 /** inherited */
 private Handler successor;

 /**
 * if the request can be handled, it is; else it is forwarded to its
successor
 */
 public abstract void handleRequest() {
 }

}

Template fState = state;
 }

 /**
 * The Context object delegates all state-specific requests to its
 * associated State instance.
 */
 public void request() {
 // Customize this method based on your application needs.
 fState.handle(this);
 }

 /**
 * This method changes the state of the Context instance.
 */
 public void changeState(State state) {
 fState = state;
 }

}
package state;

public abstract class State {

 /**
 * This method changes the state of the given Context parameter.
 */
 protected void changeState(Context context, State state) {
 context.changeState(state);
 }

 /**
 * The ConcreteState must implement this abstract method.
 */
 public abstract void handle(Context context);

}
package state;

public class ConcreteState extends State {

 /**
 * Default constructor
 */
 public ConcreteState() {
 super();
 }

 /**
 * This method handles a request from a Context instance.
 */
 public void handle(Context context) {
 super.changeState(context, this);
 }

}

Example

JDJ.SYS-CON.com54 November 2005

sk most people on the street
what Java is and they might tell
you it’s an Indonesian island. If
you happen to bump into some

programmers, they’ll probably tell you
it’s a language that reads like C++ but has
garbage collection and a virtual machine
to make it portable. The connection is
reputedly the syllogism where the island
gives name to its coffee, people drink
coffee while surfing the Web, and Java is
the computer language of the Web.
 Most folks don’t mistake volcanic
islands with programming languages
and there’s enough clear water between
Jakarta and San Jose to avoid any confu-
sion. What troubles me is that the adjec-
tive Java within IT itself is no longer as
clear as it once was.
 The words Desktop Java when
browsed on java.sun.com, for example,
talks very clearly about J2SE, with
Desktop being a subgroup along with
Core Java, Embedded, and Realtime.
However, you’ll also find hits around the
Java Desktop System and stories of how
it’s going to be bundled with Linux and
dethrone the Microsoft operating system
and MSOffice. The Java Desktop System
is a grouping of various apps such as a
browser, office, mail, and other com-
modity programs that all run on Linux
and, bundled together, provide a pretty
solid operating environment. I take my
hat off to everyone who works on it and
wish them nothing but success; my fight
is with whoever decided to give it the
“Java” adjective.
 A few weeks ago The Hindu, an Asian
newspaper, ran a story that showed Scott
McNealy unashamedly plugging the
Java system for the desktop environ-
ment in India (http://www.hindu.
com/thehindu/seta/2003/10/16/sto-
ries/2003101600070200.htm). It’s a fun
read except that it horribly confuses the
Java programming language with Sun’s
all-in-one Linux desktop program suite.
To make things clearer to its readers in
case any of them were confused about
what Scott is selling, it has a paragraph
authoritatively lifted word for word from

the Computer Desktop Encyclopedia that
extols the virtues of the Java language
and its ability to run cross platform in
applets.
 At Java Developer’s Journal I have the
nice title of “Desktop Java Editor.” I re-
view and help to put together content re-
lated to J2SE, yet I get press releases from
people wanting me to plug the “Java
Desktop System”; recently I received an
e-mail from an editor of another very
reputable technology publication who
asked me to comment on the recent
news that the “Java Desktop system” now
included StarOffice 7. He assumed, not
unnaturally, that “Desktop Java” = “Java
Desktop System.”

 There are countless other examples of
where the Java desktop is being confused
with the Java language, and I can’t help
but believe that this is something being
deliberately done by the lad or lassie at
Sun who named it in the first place. Did
a desperate marketing person trying to
come up with a sexy name for their desk-
top suite think that no confusion would
exist, or was this Machiavellian move an
attempt to deliberately confuse people
and let the kudos, image, and good name
of the Java language be used to market
Sun’s Linux desktop system?
 In the guidelines on usage of their
trademarks (http://www.sun.com/poli-
cies/trademarks/) it states: “Unauthor-
ized use of Sun trademarks or of marks
that are confusingly similar to Sun trade-

marks may constitute an infringement of
Sun’s trademark rights.” This means that
if you came up with, for example, a 100%
Pure Java suite of desktop programs and
wanted to call it “My super duper Java
desktop,” you couldn’t unless you got a li-
cense agreement from Sun. Furthermore
the site http://www.sun.com/smi/Press/
sunflash/1997-10/sunflash.971015.0001.
tm-noindex.html states that to use Java
branding, you must certify against the
Java Test Compatibility Kit, something
that most of the “Desktop Java” suite
doesn’t even come close to, given that
parts of it are written in C++.
 While I’m on my soap box, I’d like to
mention Sun Java Studio Creator. I love
the product, haven’t a bad word to say
about anyone who works on it, but on
www.java.com/en it lists the creation of
Sun Java Studio Creator in 2004 as one
of the three most important events in
Java’s history that year – together with the
release of Java 5 (aka Tiger) and the Mars
Rover buggies being powered by Java (the
bit about the rover’s software crashing
and crippling the unit for a month is left
out). My memory may not be as good as
the Sun employees who write the content
for java.com, but in 2004 I also remember
key events such as the incredible growth
of JBoss and the release of Eclipse 3.0.
 If Sun can’t eat their own dog food
when it comes to the usage of the Java
brand, and repeatedly ignore everything
else that goes on in the Java community
that they don’t control or are part of,
then it is their loss. Java technology is big
enough that it has, and will, continue
to win over C# and Java is the language
choice of three-quarters of the people
building Web apps. There are millions of
programmers who write Java programs,
countless individuals who tirelessly
create great and truly open communi-
ties based around Java technology, and
thousands of successful companies that
use Java technology effectively to solve
their business problems on a daily basis.
History books are written by the winning
site, while propaganda can be written by
anyone.

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

What, Where, or
Who Is Java?

Joe Winchester is a

software developer

working on WebSphere

development tools for

IBM in Hursley, UK.

joewinchester@sys-con.com

A

 © 2005 WEB SERVICES EDGE. ALL RIGHTS RESERVED

��� ������������������

��

��

��

������������

��

� ������������������������������
� �������� �������������������������������
� � �������������������������
� � ��������������������
� � �����������������������

����������������������
��

���

�������������������������

���
���
���
��
���
��
��
��

�������������������

�������������������������

������������������������

�����������������������������������
������������������������
�������
���������������
�����������
���������������������������
���������������������
�������������������������
�������������������������
��������������������������
��

�������������������������
�������������������
������������������
����������
��������������������������
���������������������
����������������
����������������
�����������������������������
����������������������������

����������������������
����������������������
�����������
������������������
�����������������������
�����������������

���������
�������������������
����������������������������
������������������������������
����������������

������������������������

��
���
���
������������������������������

�������������������

 © 2005 WEB SERVICES EDGE. ALL RIGHTS RESERVED

��� ������������������

��

��

��

������������

��

� ������������������������������
� �������� �������������������������������
� � �������������������������
� � ��������������������
� � �����������������������

����������������������
��

���

�������������������������

���
���
���
��
���
��
��
��

�������������������

�������������������������

������������������������

�����������������������������������
������������������������
�������
���������������
�����������
���������������������������
���������������������
�������������������������
�������������������������
��������������������������
��

�������������������������
�������������������
������������������
����������
��������������������������
���������������������
����������������
����������������
�����������������������������
����������������������������

����������������������
����������������������
�����������
������������������
�����������������������
�����������������

���������
�������������������
����������������������������
������������������������������
����������������

������������������������

��
���
���
������������������������������

�������������������

JDJ.SYS-CON.com56 November 2005

n this month’s article I continue
my discussion of a list-based
UI framework that I started last
month (“ArrayListModel,” [JDJ,

Vol. 10, issue 10]). The primary
concept behind this idea is a data
model that contains elements that
describe parts of an application’s user
interface. Through a single model,
various aspects of the user interface
can be controlled, manipulated, and
visually synchronized. There is a lot
of interesting code that accompanies
this article, so I encourage you to
download it and check it out. Let’s get
started.

Data Model
 Recall from last month’s article the
UIElement interface that describes our
user interface element:

public interface UIElement {

 Object getItem();

 String getDescription();

 Icon getSmallIcon();

 Icon getLargeIcon();

 JComponent getComponent();

}

 The UIElement interface includes
methods that allow other Swing
component consumers to construct
the user interface. The getDescrip-
tion() method would normally be
used to provide tooltip text, while
the get*Icon() methods can be used
appropriately to provide icons on
such things that include but are
not limited to menu items, toolbar
buttons, internal window icons, and
tabbed pane icons (we’ll see exam-
ples of each of these in our discus-
sion). The getComponent() method
is used to associate some other visual
component with the UIElement. This
is typically used when the UIEle-
ment shown in the user interface is
selected.
 Our data model, UIElementList-
Model (see Listing 1), is based on the

ArrayListModel that I also introduced
in last month’s article. This is an Ar-
rayList sub-class that implements the
ListModel interface, which allows a
consumer to listen for changes in the
underlying Collection via the ListDat-
aListener interface. UIElementList-
Model extends ArrayListModel and
types the collection to contain only
UIElement objects. In addition, the
class overrides the remove() method
in the Collection, allowing for a
VetoableChangeListener to inter-
cept a remove operation. Remem-
ber that our data model consists of
user interface elements (UIElement
objects), which can be removed by
some user-initiated operation. The
classic example is the closing of an
internal frame that contains unsaved
data – the user must be prompted to
save the data first or allow the close
operation to proceed without saving.
The remove (close) operation is done
through the data model as other as-
pects of the user interface are listen-
ing to changes in the UIElementList-
Model model. We’ll see an example of
this later.
 Since the UIElement construct is
fairly ubiquitous in our framework,
it begs for an AbstractUIElement
implementation that handles some
of the common tasks described by
the interface. The code accompany-
ing the article includes an immutable
AbstractUIElement implementation.
Probably the most interesting thing
about it is that it handles the getLar-
geIcon() method by scaling the small

icon associated with the UIElement,
or vice versa (i.e., if a large icon is
provided, but not a small icon, it will
scale down the large one). Listing 2
shows the implementations of these
methods. Obviously the scaling isn’t
perfect, and it certainly isn’t meant to
replace the work of a good graphics
designer. Nevertheless, it’s great for
prototyping your UI when you might
have only crude versions of one icon
or the other.

Views on Our Model
 Now that we have a solid founda-
tion for the model side of our frame-
work, we need views that work with
this model. Our views are naturally
going to implement some inter-
face, and we’ll provide an abstract
implementation of this interface to
simplify the task of implementing
various views. Listing 3 defines our
interface, UIElementListView.
 Our view interface supports our
data model (UIElementListModel)
with a getter and setter. It also has
the concept of a selected item/index
and a SingleSelectionModel that is
conveniently used to enable selec-
tion listeners via the add/remove
ChangeListener methods. Finally,
our interface is supported visually
by some component – the getCom-
ponent() method. My choice of a
SingleSelectionModel here is inten-
tional, as usually there is only
a single “active” item (window, inter-
nal frame, tabbed pane, etc.) in an
application.
 The accompanying code to this
article, which can be downloaded
from http://jdj.sys-con.com, pro-
vides an AbstractListView imple-
mentation of the UIElementListView
interface. The most interesting
method in this class is the setModel()
method (see Listing 4). This method
first checks to see if it currently hosts
a model and, if so, it removes all
of the underlying views (there are

Techniques

by Phil Herold
List-Based UI Framework

I

Phil Herold is a Java

architect with over

24 years experience in

software engineering.

He has been working

with Java client

technologies since

1996.

Phil.Herold@sas.com

Ideas for your Swing application development

 Figure 1 ListViewTest

57November 2005JDJ.SYS-CON.com

abstract insert and remove methods in
this class that are used to add/remove
a view). Remember that a view cor-
responds to a UIElement (contained
in our data model, UIElementList-
Model), with an associated compo-
nent. So, for example, a tabbed pane
AbstractListView implementation
returns a JTabbedPane in its getCom-
ponent() method. Each tabbed pane
in this view hosts a component that
is returned by the getComponent()
method of the UIElement object.
The insert and remove methods of a
tabbed pane AbstractListView would
be used to add/remove a tabbed pane.
You can see in Listing 4 where a view
is inserted for each element in the new
data model.
 AbstractListView also implements
ListDataListener and adds itself as a
listener on the UIElementListModel.
In this manner, it can respond to
changes in the data model that are
initiated in other parts of the applica-
tion. For example, a menu item can
be used to “close” a frame, internal
frame, or tabbed pane of an applica-
tion. The menu item action simply has
to remove the element from the model
and any views using the model will
react accordingly.
 Finally, AbstractListView provides
a VetoableChangeListener on our
UIElementListModel. The vetoa-
bleChange() method in the listener
simply delegates to a canClose() meth-
od in AbstractListView, in which the
default implementation returns true.
A subclass can override canClose() if
needed, for example, to prompt the
user for unsaved data. There is an
example of this below, too.

Putting It All Together
 I’ve introduced quite a few concepts
and classes up to this point, so it’s time
to show a few examples of how all of
this is used (you may be wondering
about this at this point as well). You
may recall the sample program from
last month’s article. Figure 1 shows a
similar application, consisting of a
toolbar with toggle buttons and a
JDesktopPane.
 In the code provided with this
article, you can run the ListViewTest
Eclipse launch target to execute this
sample program (you’ll need a J2SE 5.0
JDK with Eclipse to compile and run
the code). The toolbar is constructed
from all of the elements returned by
a UIElementFactory implementation.

The JDesktopPane is provided in the
getComponent() method of a class
called MDIView, which simply extends
AbstractListView. The model for the
application is a UIElementListModel,
where each element of the model cor-
responds to an internal frame in the
JDesktopPane (MDIView). Selecting
a toggle on the toolbar either adds or
removes (based on the toggle state)
the corresponding UIElement from the
model. In Figure 1, I’ve selected the
Green, Cyan, Pink, and White toolbar
items, respectively.
 When you run ListViewTest applica-
tion, you specify the class name of the
UIElementFactory and the class name
of the underlying AbstractListView.
Figure 2 shows another UIElementFac-
tory implementation. (There are two
UIElementFactory implementations
provided with the sample code. Each
returns instances of UIElement objects
that are created by extending Abstrac-
tUIElement.)
 There are two additional Ab-
stractListView implementations
provided as part of the sample code:
ListView, which uses a JList as its view
on the model (see Figure 5 below);
and TabbedPaneView, which uses a
JTabbedPane as the view (see Figure
3). Other AbstractListView imple-
mentations are possible – use your
imagination. (For example, though
not provided with the sample code, I
have a ShortCutPanel implementation
where a custom icon button on the left
is used to select a view on the right [for
an example, see the Tools->Options
dialog in the Firefox browser]. The
panel supports small and large icons
– and these are gotten from the UIEle-
ment objects in the model).
 Again, the different looks of each
of Figures 1 through 3 are created
simply by providing different run-
time arguments to the ListViewTest
application.
 Figure 4 is a result of de-selecting
the “Pink” item on the toolbar (refer
back to Figure 1). This user-initiated
action removed that UIElement from
the model, and the AbstractListView
(MDIView) reacted accordingly by
removing the corresponding internal
frame.
 You can easily imagine this happen-
ing as a result of menu item selection,
or even more directly from pressing
the window close button (X) on the
internal frame. In fact, MDIView does
just that. For each JInternalFrame

 Figure 2 ListViewTest – alternate UIElement factory

 Figure 3 ListViewTest – Tabbed Pane AbstractListView

 Figure 5 ListViewTest2 – View Menu

 Figure 6 ListViewTest2 –MDI AbstractListView

 Figure 4 ListViewTest – Removing a UIElement from the model

JDJ.SYS-CON.com58 November 2005

that’s added, it adds an Internal-
FrameAdapter to the frame (see List-
ing 5).
 Note that the internalFrameClos-
ing() method does the removal from
the UIElementListModel (and not the
AbstractListView nor the JDesktop-
Pane). The AbstractListView (MDI-
View) will react accordingly, as will
other user interface elements that
might be listening to changes in the
model.

A More Sophisticated Example
 With the sample code for this ap-
plication I’ve also provided a more
comprehensive implementation of
the concepts presented earlier. In
particular, it allows for the view to be
dynamically changed. It also provides
an additional listener on the model
that tracks the changes to the model,
the very familiar “Window” menu
concept.
 Run the ListViewTest2 Eclipse
launch target in the sample project. As
in the ListViewTest above, you specify
the UIElementFactory implementa-
tion. Figure 5 shows this applica-
tion, with the default ListView as the
AbstractListView, and several items
already selected on the toolbar. Figure
6 shows the result of switching to the
MDIView.

 The ability to change views dynami-
cally while maintaining the underlying
UIElement views in the model was
accomplished by the the setModel()
method of AbstractListView that we
previously examined. At this point I’ll
admit that this capability was inspired
by a need I had in an application I
was writing: a 3270 terminal emula-
tor application, in which each view
(UIElement) was a TN3270 session with
a remote mainframe host. Originally
implemented as an MDI application
only, I wanted the ability to switch to a
tabbed view without losing any data. I
thought that would be pretty cool, and
it was (though I must also confess that
I never finished working on this, since
it was a skunk work project, and a large
one at that). It’s interesting to note that
the Microsoft Visual Studio 2003 IDE (I
haven’t seen the 2005 version) supports
either an MDI or tabbed view, but you
have to shut down the application and
restart it to affect the change – now how
lame is that?
 ListViewTest2.java contains an in-
ner class WindowMenu that is used to
track changes to the UIElementList-
Model (it’s a ListDataListener on the
model). It also tracks the currently
selected view as a ChangeListener
on the SingleSelectionModel of the
current view. To do this, it has to know
when the current view changes, which
is accomplished via a PropertyChan-
geListener on the test application.
Remember that selection is an attri-
bute of the view, not the model. This is
visually shown in Figure 7, where the
“Cyan” internal frame was activated by
clicking its frame boundary, and that
item is subsequently selected in the
Window menu, reflecting the current
state of the application.
 Similarly, selecting another “win-
dow” item on this menu activates the
corresponding internal frame. This is
accomplished with a single line of code
in the actionPerformed() method of the
menu item’s ActionListener:

 currentView.setSelectedIndex(windowItems.

indexOf(e.getSource()));

where currentView is the current
AbstractListView shown, and win-
dowItems is a cache (ArrayList) of the
dynamic JRadioButtonMenu items on
the Window menu.

 As an added bonus, the MDIView
in the sample code has implementa-
tions of Cascade and three different
Tile methods as shown on the Window
menu in Figure 7 – you might find these
useful.
 Finally, Figure 8 shows the result of
selecting the “Cyan” toolbar toggle, with
the resulting remove() call on the model
being intercepted by MDIView. (Again,
this action could also have been initi-
ated by using the “Close” button on the
internal frame.)
 The MDIView subclass of Ab-
stractListView simply has to override
the canClose() method. Listing 6 shows
how this is done in ListViewTest2.java.
 The call to updateToggleState() shown
in Listing 6 is used to synchronize the
toggle buttons on the toolbar, to ensure
that they are synchronized with the
UIElementListModel. This is necessary
because a toolbar toggle button may
have been used to initiate the “close”, but
it ultimately was rejected, so the button
that was pressed becomes out of sync
with the application. (I suppose you
could implement an AbstractListView
based on a JToolBar, which would listen
to changes in the model directly. I don’t
really consider a JToolBar a good Ab-
stractListView candidate, simply because
you often need the ability to disable/en-
able toolbar buttons, and this framework
doesn’t provide that, by design. In this
particular test application, we’re using
toggle buttons on the toolbar, which
implies multiple selection state, which is
also contrary to the design.)

Conclusion
 In this article, I’ve presented a small
framework for building a Swing applica-
tion based on the familiar Model/View/
Controller concept. The twist on this
implementation is that the data model
is actually a model of visual compo-
nents, but like traditional MVC, there
are various views on the model. The
framework is complete enough to allow
various aspects of the user interface
to react to changes on a single model,
rather than the customary delegation
of change events through a common
PropertyChangeSupport object.
 I wouldn’t expect a large applica-
tion or framework to be built solely on
these concepts, but I hope I have given
you some ideas to consider in your
Swing application development.

Techniques

 Figure 7 ListViewTest2 – Window Menu

 Figure 8 ListViewTest2 – Intercepting model remove()

59November 2005JDJ.SYS-CON.com

Listing 1: UIElementListModel class
public class UIElementListModel extends ArrayListModel<UIElement> {
 public interface ConstrainedProperties {
 final String REMOVE = “remove”;
 }
 private VetoableChangeSupport vcs;

 @Override
 public UIElement remove(int index) {
 boolean okToRemove = true;
 UIElement removedElement = get(index);
 if (vcs != null) {
 try {
 vcs.fireVetoableChange(new VetoableChan
geEvent(this, ConstrainedProperties.REMOVE, new, removedElement));
 } catch (PropertyVetoException pve) {
 okToRemove = false;
 }
 }
 if (okToRemove) {
 removedElement = super.remove(index);
 }
 return removedElement;
 }

 public void addVetoableChangeListener(VetoableChangeListener lis-
tener) {
 if (vcs == null) {
 vcs = new VetoableChangeSupport(this);
 }
 vcs.addVetoableChangeListener(listener);
 }

 public void removeVetoableChangeListener(VetoableChangeListener
listener) {
 if (vcs != null) {
 vcs.removeVetoableChangeListener(listener);
 }
 }
}

Listing 2: Sample of AbstractUIElement methods
public Icon getSmallIcon() {
 if (smallIcon == null || largeIcon == smallIcon) {
 if (largeIcon != null) {
 smallIcon = scaleIcon(getComponent(), largeIcon,
0.5);
 }
 }
 return smallIcon;
}

public Icon getLargeIcon() {
 if (largeIcon == null || largeIcon == smallIcon) {
 if (smallIcon != null) {
 largeIcon = scaleIcon(getComponent(), smallIcon,
2.0);
 }
 }
 return largeIcon;
}

private Icon scaleIcon(Component component, Icon icon, double scale) {
 int newWidth = (int)(icon.getIconWidth() * scale);
 int newHeight = (int)(icon.getIconHeight() * scale);
 if (!(icon instanceof ImageIcon)) {
 BufferedImage bi = new BufferedImage(icon.getIconWidth(),
icon.getIconHeight(), BufferedImage.TYPE_INT_ARGB);
 icon.paintIcon(component, bi.getGraphics(), 0, 0);
 icon = new ImageIcon(bi);
 }
 return new ImageIcon(((ImageIcon)icon).getImage()
.getScaledInstance(newWidth,
 newHeight, Image.SCALE_SMOOTH));
}

Listing 3: UIElementListView interface
public interface UIElementListView {
 Component getComponent();
 UIElementListModel getModel();
 void setModel(UIElementListModel model);
 UIElement getSelectedItem();
 void setSelectedItem(UIElement element);
 int getSelectedIndex();
 void setSelectedIndex(int index);
 SingleSelectionModel getSingleSelectionModel();
}

Listing 4: setModel() Method in AbstractListView
public void setModel(UIElementListModel newModel) {
 if (model != newModel) {
 if (model != null) {
 model.removeListDataListener(this);
 model.removeVetoableChangeListener(vcs);
 int size = model.size();
 for (int i = 0; i < size; i++) {
 remove(0);
 }
 }
 if (newModel == null) {
 newModel = new UIElementListModel();
 }
 model = newModel;
 model.addListDataListener(this);
 model.addVetoableChangeListener(vcs);
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 int index = 0;
 for (UIElement element : model) {
 insert(index++, element);
 }
 }
 });
 }
}

Listing 5: InternalFrameAdapter for MDIView
private InternalFrameListener frameListener = new InternalFrameAdapt-
 er() {
 @Override
 public void internalFrameActivated(InternalFrameEvent e) {
 int index = frames.indexOf(e.getSource());
 setSelectedIndex(index);
 selectionModel.setSelectedIndex(index);
 }
 @Override
 public void internalFrameClosing(InternalFrameEvent e) {
UIElement element = ((InternalFrame)e.getSource()).element;
 getModel().remove(element);
 }
};

Listing 6: Overriding canClose() in an AbstractListView
mdiView = new MDIView() {
 @Override
 protected boolean canClose(UIElement element) {
boolean canClose =
 JOptionPane.showConfirmDialog(ListViewTest2.this,
 “Are you sure you want to close this?”, “Confirm”,
 JOptionPane.YES_NO_CANCEL_OPTION)
== JOptionPane.YES_OPTION;

 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 updateToggleState();
 }
 });
return canClose;
}
};

JDJ.SYS-CON.com60 November 2005

ast month I introduced the 2005
ratified ballot nominees for the
JCP ECs. Meanwhile ratified vot-
ing concluded on October 17 and

results confirmed all nominees: BEA
Systems, SAP AG, and SAS Institute for
the Standard/Enterprise Edition Execu-
tive Committee; and Nokia Corporation,
IBM, and Philips Electronics UK for
the Micro Edition Executive Commit-
tee. Congratulations to all and a warm
welcome to new EC member SAS. You’ll
find more details about this round
of elections at http://www.jcpelec-
tion2005.org/jcp/ratification_results.
 What’s next? Open nominations are
now under way and run until the end of
October. This year there are two seats
available on the SE/EE EC and two seats
available on the ME EC. Several com-
panies and individual developers have
already self-nominated to participate
in open elections and I’d like to intro-
duce them to you as candidates for
the JCP ECs. First those for the JCP
SE/EE Executive Committee.
 Intel Corporation has participat-
ed in 14 JSRs: JSR 277 – Java Module
System, JSR 271 – Mobile Information
Device Profile 3, JSR 253 – Mobile Tele-
phony API (MTA), JSR 250 – Common
Annotations for the Java Platform, JSR
218 – Connected Device Configuration
1.1, JSR 217 – Personal Basis Profile 1.1,
JSR 209 – Advanced Graphics and User
Interface Optional Package for the J2ME
Platform, JSR 205 – Wireless Messaging
API 2.0, JSR 184 – Mobile 3D Graphics
API for J2ME, JSR 179 – Location API
for J2ME, JSR 174 – Monitoring and
Management Specification for the Java
Virtual Machine, JSR 163 – Java Platform
Profiling Architecture, and JSR 113
– Java Speech API 2.0.
 In support of its candidature, Intel
also brings its leadership in micropro-
cessor innovation and other cutting-
edge technologies in the vast array
of devices and computing platforms
to where the Java platform is being

deployed. These include multi-core and
threading, wireless and wired network-
ing, and semiconductor devices for
embedded controllers, mobile phones,
PDAs, set-top boxes, laptops, PCs, serv-
ers, and supercomputers.
 IONA Technologies has been an
elected member of the JCP SE/EE Execu-
tive Committee since 2000. It contributed
to over 40 JSRs including JSR 215 – Java
Community Process version 2.6, JSR 261
– Java API for XML-based Web Services
Addressing (JAX-WSA), and JSR 265 – API
for Utilizing Web Services Policy. Its EC
representatives have worked closely with
Intel and Sun to formulate the procedures

now adopted by the EC for running an
EC meeting. The company helped evolve
the JCP program to version 2.6, which
requires of members more transparency
in the development process, encourages
more community involvement, and helps
move specifications more quickly through
the process.
 EMC Corporation brings, in support
of its self-nomination, its broad exper-
tise in developing products, services,
and solutions for information storage,
its participation in industry bodies that
develop open standards to facilitate
interoperability including its contribu-
tions to the JCP through EMC Documen-
tum. EMC participates in a number of
JCP JSRs, most important of which are

JSR 170 – Content Management, JSR 168
– Portlets, JSR 283 – Content Repository,
and JSR 127 – Faces. In some of these the
company participated as formal mem-
bers of the expert committees and on
others as contributors. EMC plans to
leverage the acknowledged technical
expertise in systems management within
its SMARTS division to broaden its par-
ticipation in JSRs in this area as well.

 The self-nominations for the
JCP ME EC are:
 Aplix Corporation comes with exten-
sive JCP experience through its Expert
Group participation in JSRs including JSR
118 – Mobile Information Device Profile
2.0, JSR 220 – Enterprise JavaBeans 3.0,
JSR 135 – Mobile Media API, JSR 139

– Connected Limited Device Configura-
tion 1.1, JSR 172 – J2ME Web Services

Specification, JSR 179 – Location
API for J2ME, JSR 180 – SIP API for
J2ME, JSR 184 – Mobile 3D Graph-
ics API for J2ME, JSR 185 – Java

Technology for the Wireless Industry,
JSR 195 – Information Module Profile,

JSR 205 – Wireless Messaging API 2.0,
JSR 211 – Content Handler API, JSR 226
– Scalable 2D Vector Graphics API for
J2ME, JSR 228 – Information Module
Profile - Next Generation (IMP-NG), JSR
229 – Payment API, JSR 230 – Data Sync
API, JSR 232 – Mobile Operational Man-
agement, JSR 233 – J2EE Mobile Device
Management and Monitoring Specifica-
tion, JSR 234 – Advanced Multimedia
Supplements, JSR 239 – Java Bindings for
OpenGL ES, JSR 246 – Device Manage-
ment API, and JSR 271 – Mobile Infor-
mation Device Profile 3. The company
quotes its global leadership in deploying
Java technology in mobile phones with
over 129 million mobile phones and con-
sumer electronics devices as of the end of
June 2005. The Aplix implementation of
a Java Runtime Environment for devices
has been licensed by over 30 handset
manufacturers and deployed in over 250
phone models offered by wireless opera-

JSR Watch

by Onno Kluyt

2005 JCP EC Elections

L

Onno Kluyt is director

of the JCP Program at

Sun Microsystems and

Chair of the JCP.

onno@jcp.org

 Ratification results in, open nominations under way

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

 Altova www.altova.com 978-816-1600 4, 27

 Arcturus Technologies www.arcturustech.com 703-822-4582 17

 ceTe Software www.dynamicpdf.com 800-631-5006 39

 ExtenTech www.extentech.com/jdj 415-759-5292 33

 Google www.google.com/jdj 650-253-0000 41

 IBM www.ibm.com/middleware/tools Cover IV

 ILOG http://diagrammer.ilog.com 800-FOR-ILOG 35

 InetSoft www.inetsoft.com/jdj 888-216-2353 37

 InterSystems www.intersystems.com/cache12p 617-621-0600 Cover II

 IT Solutions Guide www.itsolutions.sys-con.com 888-303-5282 61

 Java Developer’s Journal www.jdj.sys-con.com 888-303-5282 57

 Jinfonet Software www.jinfonet.com/jp10 301-838-5560 21

 MapInfo www.mapinfo.com/sdk 800-268-3282 13

 Northwoods Software Corp. www.nwoods.com/go 800-434-9820 45

 Parasoft Corporation www.parasoft.com/jdjmagazine 888-305-0041 7

 PDF Tools http://www.pdf-tools.com 403-932-4220 31

 ReportingEngines www.reportingengines.com 88-884-8665 9

 Smart Data Processing, Inc. www.weekendwithexperts.com 732-598-4027 49

 Software FX www.softwarefx.com 800-392-4278 Cover III

 SYS-CON Events www2.sys-con.com/events 201-802-3066 55

 WebAppCabaret www.ngasi.com/jdj.jsp 866-256-7973 23

 Webapper www.seejava.com 47

 Windward Studios, Inc. www.windwardreports.com 303-499-2544 11, 42-43

JDJ.SYS-CON.com62 November 2005

tors around the world. Aplix became a
Sun Java license in 1996 and has been a
JCP member since 2000.
 BenQ Corporation – on October 1,
2005, Siemens Mobile Devices, a divi-
sion of Siemens AG, officially became a
new business group of BenQ Corpora-
tion. BenQ is one of the world’s top
producers of digital displays, mobile
phones, scanners, and keyboards and a
technology leader in digital projectors,
storage devices, wireless technologies,
and electronic components. The nine
Java ME spec leaderships have trans-
ferred from Siemens to BenQ Mobile,
which makes BenQ Mobile the number
three top Java ME spec leads contribu-
tor after Sun Microsystems and Nokia.
The skills and experience that come
with the spec leaderships from Siemens
are met by the BenQ traditional Java
skills and experience, resulting into a
robust Java team.

 Cox Communications, Inc., is one
of the leading North American cable
system operators with over 6.6 million
customer households. The company is
in the process of a multi-year deploy-
ment of JSR 242 and the Open Cable
Applications Platform (based on CDC
Personal Basis Profile) throughout its
entire network. Cox is a member and
active participant in many industry
standards bodies including JCP, ATSC,
CableLabs, CEA, DVB, IETF, SCTE, and
SMPTE. Cox is the specification lead for
JSR 242, which recently completed its
Final Approval Ballot and a long-time
observer status member of JME EC and
JSRs.
 Established in 1958, LG Electronics,
Inc., is one of the world’s major forces
in developing leading-edge digital
convergence technology and products
in electronics and mobile communica-
tions. As a world-class mobile handset
and consumer electronics manufac-
turer, LG Electronics has entered the
open nominations ready and willing
to contribute its expertise for technical

innovations in the JCP. LG Electronics
also takes advantage of Java technolo-
gies to develop value-added products
across its broad range of product line.
For example, more than 30% of LG
mobile phones are equipped with the
Java platform. LG Electronics currently
participates in JSR 271, JSR 272, and JSR
281 actively as well as JSR 256 and JSR
257 as an observer. LG Electronics has a
strong will to lead technical innovation
and contribute to the JCP by actively
participating in and proposing valuable
JSRs.
 SiRF Technology is a global market
and technology leader in location and
wireless mobility technology. Since its
founding in 1995, SiRF has been in the
forefront of GPS technologies and has
brought the benefits of wireless mobility
to the masses by driving open stan-
dards, high-performance products, and
lower price-points. SiRF is a strong ad-

vocate of Java standards in the location
and wireless industry and maintains a
large marketing and technical group to
promote and implement Java standards
globally across its large wireless opera-
tors and handset OEM customer base.
 Sony Ericsson Mobile Communica-
tions AB is among the top five handset
manufacturers in the world and deploys
Java ME in most of its phones. The
company plays an active role in the Java
ME industry, working toward advancing
Java ME technology to be the best open
platform for application development
on mobile devices. Sony Ericsson has
been a member of Java ME EC since
2002 and has taken an active role in
the ME Executive Committee, working
together with the other members to
ensure an open, well-managed commu-
nity. The company has also been active
in many JSR expert groups and contrib-
uted to the development of platform
JSRs like JTWI and MSA. Its portfolio of
contributions includes JSR 185 – Java
Technology for the Wireless Industry,
JSR 215 – Java Community Process

version 2.6, JSR 216 – Personal Profile
1.1, JSR 217 – Personal Basis Profile 1.1,
JSR 218 – Connected Device Configura-
tion (CDC) 1.1, JSR 219 – Foundation
Profile 1.1, and JSR 248 – Mobile Service
Architecture for CLDC, and JSR 249
– Mobile Service Architecture for CDC.
The company has implemented at least
five new JSRs in its products this year
including JSR 75 – PDA Optional Pack-
ages for the J2ME Platform, JSR 82 – Java
APIs for Bluetooth, JSR 172 – J2ME Web
Services Specification, JSR 184 – Mobile
3D Graphics API for J2ME, and JSR 205
– Wireless Messaging API 2.0.
 Symbian Ltd is a software licensing
company that develops and supplies
the advanced, open standard operating
system – Symbian OS – for data-enabled
mobile phones. During the first half of
2005, 14.5 million phones using Symbi-
an OS shipped worldwide, bringing the
worldwide installed base to more than

39 million phones. Symbian provides an
implementation of CLDC, MIDP2, and
other JSRs with the OS. Symbian has a
long history of active participation in
the JCP and JSR specification process
aimed at driving forward mobile Java
standards and delivering optimized
product quality implementations into
smartphones.

 More JCP members are expected to
self-nominate before the close of open
elections at the end of October. The
elections ballot will open on Novem-
ber 1 and will run for 14 days. Check
out details about the open nomina-
tions and the upcoming election
ballot at https://www.jcpelection2005.
org/jcp/nominate .
 The race is on; don’t miss the
opportunity to cast your vote in sup-
port of the individual developer or
company that you consider to be the
best candidate for JCP ECs member-
ship. And stay tuned for final election
results in the next Java Developer’s
Journal issue!

JSR Watch

The race is on; don’t miss the opportunity to cast your vote in
support of the individual developer or company that you consider to be

the best candidate for JCP ECs membership”
“

������������������������������� ������
��������������������������������������� ���� �������������������������������

��

���������������������

��������
��������������

���������
��������

����������������

���
���

���������
����������

���������������������� �����������������������
����������������� � ����� ������������ � ���� ������

�������� ��������� ����������������

����

